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Abstract

Calculating a sparse code for signals with high dimensionality, such as high-

resolution images, takes substantial time to compute on a traditional computer

architecture. Memristors present the opportunity to combine storage and comput-

ing elements into a single, compact device, drastically reducing the area required to

perform these calculations. This work focused on the analysis of two existing sparse

coding architectures, one of which utilizes memristors, as well as the design of a

new, third architecture that employs a memristive crossbar. These architectures

implement either a non-spiking or spiking variety of sparse coding based on the

Locally Competitive Algorithm (LCA) introduced by Rozell et al. in 2008. Each

architecture receives an arbitrary number of input lines and drives an arbitrary

number of output lines. Training of the dictionary used for the sparse code was

implemented through external control signals that approximate Oja’s rule. The

resulting designs were capable of representing input in real-time: no resets would

be needed between frames of a video, for instance, though some settle time would

be needed. The spiking architecture proposed is novel, emphasizing simplicity to

achieve lower power than existing designs.

The architectures presented were tested for their ability to encode and re-

construct 8 × 8 patches of natural images. The proposed network reconstructed

patches with a normalized, root-mean-square error of 0.13, while a more com-

plicated CMOS-only approach yielded 0.095, and a non-spiking approach yielded

0.074. Several outputs competing for representation of the input was shown to

improve reconstruction quality and preserve more subtle components in the final

encoding; the proposed algorithm lacks this feature. Steps to address this were

proposed for future work by scaling input spikes according to the current expected
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residual, without adding much complexity. The architectures were also tested with

the MNIST digit database, passing a sparse code onto a basic classifier. The pro-

posed architecture scored 81% on this test, a CMOS-only spiking variant scored

76%, and the non-spiking algorithm scored 85%. Power calculations were made

for each design and compared against other publications. The overall findings

showed great promise for spiking memristor-based ASICs, consuming only 28% of

the power used by non-spiking architectures and 6.6% as much power as a CMOS-

only spiking architecture on this task. The spike-based nature of the novel design

was also parameterized into several intuitive parameters that could be adjusted to

prefer either performance or power efficiency.

The design and analysis of architectures for sparse coding should greatly re-

duce the amount of future work needed to implement an end-to-end classification

pipeline for images or other signal data. When lower power is a primary concern,

the proposed architecture should be considered as it surpassed other published

algorithms. These pipelines could be used to provide low-power visual assistance,

highlighting objects within high-definition video frames in real-time. The technol-

ogy could also be used to help self-driving cars identify hazards more quickly and

efficiently.
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1

Introduction

1.1 Motivation

Sparse coding architectures have been around for a long time and have been used

for a number of applications, including image classification [18,26], compression [6],

and reinforcement learning [1]. The ability to reduce a large number of inputs into

a sparse code of higher order features has been primarily performed on traditional

computer architectures or in CMOS technology. Incorporating novel devices, such

as the memristor, into these architectures promises greater efficiency. Since these

architectures perform generic tasks (a sparse coding algorithm does not dictate a

specific type of input, e.g. video, pictures, or audio could all be processed on the

same hardware), these algorithms are a great target for optimized, next-generation

ASICs.

Memristive devices, first fabricated in 2008, offer the ability to represent a broad

range of values in a single, two-terminal device [32]. The simplicity and flexibility of

these devices promise a significant reduction in both power and area for integrated

circuits [37,38]. Memristors have also given new life to the study of neuromorphic

architectures: in the past few years, there have been many publications detailing

their unique ability to function similarly to a biological synapse, whose sensitivity

to input can be adjusted throughout the synapse’s life [10,26,40]. In neuromorphic

architectures, the strengths of these synapses are represented by weight matrices.

With memristors, the weight matrices can be stored as a crossbar with memristors

connecting each row and column, and evaluated directly by applying voltages to
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rows and measuring the current through the columns. This approach provides a

compact, analog means of representing the various weights within a neuromorphic

architecture.

This work explored neuromorphic architectures specifically related to sparse

coding. A common problem in image recognition is the high dimensionality of the

input signal. Sparse coding describes the process of translating a multi-dimensional

input vector into a new basis where a smaller number of basis vectors have non-

zero coefficients, effectively increasing the significance of each non-zero coefficient

in the resulting vector. In this work, the basis vectors were learned from training

data on the MNIST digit database [15] as well as patches on selected natural

images (Fig. 3.1). The Locally Competitive Algorithm (LCA) introduced by Rozell

et al. provides the baseline for this analysis [27]. LCA works well as it implements

inhibition between different basis vectors, preventing them from becoming too

similar to one another, while at the same time calculating this inhibition factor

rather than needing to learn it (in contrast with, e.g., SAILnet [13,42]).

1.2 Sparse Coding

1.2.1 Definition

Sparse coding is a process by which input vectors are encoded more sparsely (fewer

non-zero coefficients) in a different basis than the input’s natural basis. By reduc-

ing the number of non-zero coefficients needed to describe an input, sparse coding

effectively increases the significance of each non-zero coefficient in the output. In-

tuitively, this means that the new basis maps significant features in the original

input space onto single axes in the new space, which can be linearly combined to

reconstruct members of the original input space. Often, the new basis is called a
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×0 ×1 ×0

×0 ×1 ×0

+ +

+ ++

Dictionary

Coefficients

Figure 1.1: Sparse coding example. A 3× 3 input image (input vector of length 9)
is shown with 5 non-zero coefficients. Using a dictionary of 6 vectors representing
horizontal and vertical lines, this same image can be represented with only 2 non-
zero coefficients.

“dictionary” due to the fact that its axes encode key features of the input space,

with each basis vector being called a “dictionary element.” Figure 1.1 demonstrates

an example of sparse coding.

Sparse coding can be broken down into two steps: encoding an input given a

predefined dictionary, shown in Section 1.2.2, and learning a dictionary to better

encode a set of inputs, explored in Section 1.2.3.

1.2.2 Encoding a Signal

Encoding is the process of generating coefficients for the sparse code’s dictionary

elements that best represent a given input vector. One possible set of coefficients

generated by encoding an image using a sparse code is shown in Fig. 1.1.

Since sparsity is the desired attribute in a sparse code, often the active (non-

zero coefficient) dictionary elements do not perfectly describe the input. This leads

3



×1

×1

+

Figure 1.2: Sparse coding example with reconstruction error. The dictionary el-
ements selected cannot perfectly express the input: the green pixel (horizontal
stripes) is present in the reconstruction but not the original, and the red block
(vertical stripes) is present in the original but not the reconstruction. These errors
between the original input and the reconstruction constitute the residual ~r, which
can be quantized via the root-mean-square error (RMSE). Here, there are 2 incor-
rect values in the reconstruction out of 9. If each incorrect value is represented by

a residual of 1 on the corresponding axis, then the RMSE would be
√

2(1)2

9
= 0.47.

to a loss of details that can not be represented in the new basis. These lost details

can be quantized as reconstruction error: R(~r = ~x− ~̂x), where R is some function

of the residual ~r between the original input ~x and its analog that has gone through

the sparse coding process ~̂x. For this work, R was defined as the root-mean-

square error (RMSE), R(~r) =

√∑n
i=1 r

2
i

n
. This function has the benefit of being the

distance between the input vectors in the space of its standard basis. This concept

is demonstrated in Fig. 1.2. Algorithms dealing with mapping an input vector

often offer a trade-off between the sparsity of the final solution and its accuracy.

In the LCA, this is accomplished through the λ threshold parameter [27].

There are many algorithms that address the encoding part of sparse coding.

One of the oldest known algorithms is Matching Pursuit, which selects the next

4

mperkows
Highlight

mperkows
Highlight



non-zero coefficient based on which coefficient would be largest [17]. More compli-

cated algorithms, such as the LCA presented by Rozell et al., attempt to simul-

taneously solve for all coefficients by integrating a system of ordinary differential

equations [27]. Algorithms such as Spike-Timing-Dependent Plasticity (STDP) im-

plement the encoding step alongside dictionary learning without any separation of

the two parts [18].

The focus of this work was on algorithms based on the LCA, as it implements

inhibition between dictionary elements in such a way that the vectors making up

the elements are at a larger angle to one another than without inhibition.

1.2.3 Learning the Dictionary

Sparse codes allow any input to be represented with any dictionary. However, a

poor dictionary leads to a large residual, implying that the encoded vector does

not capture much of the input information. Iteratively improving a sparse code

requires tweaking the dictionary in such a way that it encodes future inputs more

sparsely and accurately.

Different algorithms exist for updating the dictionary. One family of such

algorithms is Hebbian learning, where updates are applied according to the analog

strengths of the inputs in tandem with the strengths of the outputs. The traditional

Hebbian rule for updates, proposed by Donald Hebb in 1949, implements behavior

where neurons become more and more responsive to the input combination that

caused them to fire in the first place [9]. However, this rule is unstable on its own,

requiring the weights to be constantly renormalized. This work was extended by

Erkki Oja in 1982, who proposed a variant that adjusts the learning rate according

to the residual of the input rather than the input itself [23]. This avoids the
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instability problems seen with Hebb’s rule. Oja’s rule was further extended by

Terence Sanger in 1989 to produce a layer of neurons that are arranged to avoid

linear dependence between the receptive fields in the layer [28]. However, Sanger’s

rule is more complicated to implement in hardware, as well as not being suitable

for sparse coding: the usage of principle components infers orthogonality in each

receptive field, leading to greater loss of accuracy when only a subset of coefficients

are allowed to be non-zero.

An extension to the Hebbian family, algorithms such as STDP also provide

means of updating the receptive fields in tandem with encoding the input. In

STDP, any inputs that are active when an output is triggered will have their

weights increased, while any inactive inputs will have their weights decreased.

This is triggered by having the column voltage varied between a suitably low value

to trigger an increase in weight for active inputs, and a suitably high value to

trigger a decrease in weight for inactive inputs. Such an approach was previously

demonstrated with a memristive crossbar by Querlioz et al. [26].

This work used Oja’s rule to update the dictionary elements, which is illustrated

in Fig. 1.3 and defined as [23]:

∆wi,j = ηyjri. (1.1)

Oja’s rule provides stable weights, and also lends itself to an intuitive under-

standing that the dictionary’s ultimate goal is to minimize reconstruction error

(realized through the residual term ri in Eq. (1.1); a smaller residual produces a

smaller ∆wi,j).
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Figure 1.3: Learning via Oja’s rule [23]. By repeatedly adding residuals back into
the dictionary elements used in a reconstruction, those dictionary elements adjust
to better suit the input.

1.3 Related Work

Sparse coding is a technique with a number of applications, including image classifi-

cation [18,26], compression [6], and reinforcement learning [1]. The wide applicabil-

ity of sparse coding has lead researchers to investigate architectures implementing

algorithms that address sparse coding. Some of these prior works use conventional

CMOS techniques, while others use more novel nanodevices to realize the same

algorithms.

1.3.1 CMOS-Only Architectures

Traditional CMOS architectures can be used to implement sparse coding. Kim et

al. implemented a spiking ASIC in 65nm CMOS in 2014 [13], achieving a through-

put of 952 Mpixels/s at 0.486 nJ/pixel using a sparse code of 512 receptive fields.

Their architecture was based on SAILnet, a sparse coding algorithm similar to LCA

where the inhibition between output columns is learned rather than computed [42].

Shapero et al., the proposers of the Spiking Locally Competitive Algorithm

demonstrated in this work, implemented both their spiking LCA and non-spiking
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LCA using a Field-Programmable Analog Array (FPAA) leveraging 350 nm tech-

nology [29, 30]. They cited 3 mW of power consumed by the spiking algorithm

for a 12 × 18 network. However, the chip they used idles at 1.7 mW of power,

making the spiking LCA consume 1.3 mW of power on its own. The non-spiking

LCA consumed 28.3 µW of power for a 2 × 3 network. They claim power scaling

of O(n) and O(n
√
n) for their spiking and non-spiking architectures. Scaling up

the network sizes to match the number of neurons used in this work, 50, the non-

spiking algorithm would require around 1.93 mW and the spiking algorithm would

require 3.72 mW of power. However, these figures omit the additional increase

in input lines; the tasks in this work use 192 and 768 input lines, whereas those

estimates are for 33 input lines. Shapero et al. do not address input line scaling

independently. It is reasonable to assume that input line scaling is O(n), given

neither the non-spiking nor spiking architectures presented by Shapero et al. use

additional logic between input lines. Therefore, adding the remaining 159 input

lines by scaling the original, measured figures, these architectures are estimated

at 4.18 mW for non-spiking and 21.0 mW for spiking. For the larger problem in

this work, with 768 input lines, these architectures are estimated at 11.8 mW and

79.0 mW, respectively.

1.3.2 Architectures With Novel Components

Other researchers have produced sparse coding architectures using novel compo-

nents such as memristors, using CMOS for the traditional logic parts of their

architectures [3, 8, 24, 31,33,40].
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One of the first memristive sparse coding architectures was designed and sim-

ulated by Zamarreño-Ramos et al. in 2011 [40]. Using data recorded from a fabri-

cated spiking retina chip to drive the rows, different action potential shapes were

explored in the columns. Unfortunately, the encoding accuracy of this setup was

not evaluated in this work. Power is discussed, but the memristor model that they

are using leads to the derivation of power in excess of 2 kW.

Soudry et al. looks at using memristors for implementing multilayer neural net-

works [31]. The overall architecture is not defined, instead specifying two transis-

tors and a single memristor per synapse, regardless of other configuration. Sparse

coding accuracy is said to be comparable to that in software, limited by the ac-

curacy of the weight update. Power benefits of chips using memristors are briefly

discussed, revealing a figure of 13-50× better than “standard CMOS technology,”

though actual numbers are not presented.

Payvand et al. recently described and simulated a memristor-based neuromor-

phic chip based on STDP [24]. This paper describes leveraging CMOL techniques

to combine CMOS with memristors. Power is not discussed, nor is accuracy. This

work also presents an algorithm which only takes the first spike into account; future

spikes are discarded. As shown in Section 3.2.3, algorithms relying on a single spike

perform significantly worse during reconstruction as they are unable to combine

multiple dictionary elements to better represent the input.

Bennett et al. also recently used memristors in tandem with 45nm CMOS to

identify patterns [3]. Their work focused on binary functions, with both input and

output dimensionalities well below that needed for image recognition. Power and

accuracy figures are not discussed.

Garbin et al. investigated the variability of memristors in a convolutional neural
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network, accompanied by 28nm CMOS [8]. They confirmed that device variability

does not significantly degrade classification on either of the MNIST or GTSRB

databases. On MNIST, they achieved 99% accuracy, although this is with a very

large, convolutional network.

1.4 Contributions

This work contains evidence of my work over the last two years, including:

• Implemented Rozell et al.’s original, analog LCA for sparse coding (Sec-

tion 2.1).

• Implemented Shapero et al.’s modified, spiking LCA for sparse coding (Sec-

tion 2.2).

• Designed and implemented a Simple Spiking algorithm using memristors in

a crossbar for sparse coding (Section 2.3).

• Introduced a meaningful vocabulary for controlling the trade-offs between

accuracy and efficiency for spiking models, and parametrized the Simple

Spiking variant proposed in this work to that vocabulary (Section 2.3).

• Compared different memristive devices in an environment with a 500 MHz

clock (Section 2.4).

• Evaluated sparse coding algorithms’ accuracy with natural image reconstruc-

tion (Chapter 3).

• Evaluated sparse coding algorithms’ utility for digit classification on the

MNIST handwritten digit database (Chapter 4).

10



• Evaluated the power consumption properties of these algorithms (Chapter 5).

• Published two conference papers and one journal article with collaborators

from teuscher.:Lab [34–36]; the conference paper from NANOARCH 2014 in

Paris, France received the “Best Student Paper” award.

• Designed, developed, and packaged job stream software package for simple,

extensible parallelization (Appendix A).

• Designed, developed, and distributed git-results software package for exper-

iment cataloguing and diffing (Appendix B).
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2

Models

This work focused on three different algorithms for sparse coding: Rozell et al.’s

Locally Competitive Algorithm (LCA), Shapero et al.’s spiking extension of that

algorithm, the Spiking Locally Competitive Algorithm (SLCA), and a novel archi-

tecture designed and presented as part of this work, the Simplified, Spiking Locally

Competitive Algorithm (SSLCA). This chapter explores the theory behind each ar-

chitecture, as well as how the dictionaries used by these sparse coding architectures

were trained.

2.1 Analog Locally Competitive Algorithm (LCA)

Rozell et al. introduced their Locally Competitive Algorithm (LCA) in 2008 as a

means of solving the sparse coding problem [27]. Motivated by the sparse neuronal

activity found in biological brains, the LCA minimizes a given cost function in order

to achieve sparse coding. Sparseness within the algorithm is achieved by modeling

local inhibitory connections across neurons. This locality well resembles biological

brains and makes it a suitable algorithm for hardware implementations. The LCA

is an unsupervised learning approach that calculates an output neuron’s excitation

by integrating an ODE as shown in [27]:

˙um(t) =
1

τ

[
bm(t)− um(t)−

∑
n6=m

Gm,nan(t)

]
, (2.1)

where um is the mth output neuron’s membrane potential, bm represents a neuron’s

excitatory inputs and is equal to the dot-product of the neuron’s input vector ~s
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um um+1

am+1
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wi,m+1

wi+1,m

si+1
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si+1

wbias

wbias

wbias

Figure 2.1: Basic LCA network displaying relation of input currents ~s, recep-
tive field weights W = ( ~w0, ~w1, ...), internal states ~u, thresholded outputs ~a, and
inhibitory connections of strength Gm,nan,m 6= n. The field weights wi,m are re-
alized as memristive devices at the crossbar junctions. Illustrated in solid gray
is the bias column, populated with memristive devices set to weight wbias. The
bias column corrects for leak current that would otherwise skew the calculated
dot products. For systems needing to calculate dot products between inputs and
weights both spanning positive and negative values, such as our reconstruction
task, three modifications are required: wbias is set somewhere between 0 and 1,
such as 0.4; the illustrated dotted gray rows must be added with complementary
weights (w = 0.7→ w = 2wbias−w = 0.1); and only one of si or si must be set to
a positive voltage dependent on the sign of the original input. These three modi-
fications modify the dot product calculation to account for negative and positive
weights and inputs.
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and the corresponding weight vector ~wm, Gm,n describes the mutual representation

of the m and nth receptive fields and is defined as φTφ−I, and an is a thresholding

function applied to un to achieve sparsity. This setup is further explored in Fig. 2.1.

As stated in the original paper, this ODE minimizes an energy function that is

the combination of the difference between a reconstruction and the original input

signal, plus a sparseness term [27]. The result is that the product of the dictionary

φ with the activation vector ~a is an optimal approximation ~̂s of the input signal ~s

with the dictionary φ and the given sparsity penalty (achieved by the thresholding

function used for the activation vector ~a).

In this work, the dictionary was updated after each reconstruction according

to Oja’s rule as in Section 1.2.3. However, to achieve a near-optimal learning

schedule, the work of Zeiler et al. on the ADADELTA algorithm was used to

generate a dynamic learning rate [41]. The difference between these schedules can

be seen in Fig. 2.2.

2.2 Spiking Locally Competitive Algorithm (SLCA)

Shapero et al. extended Rozell’s analog algorithm into a spiking variant in 2013 [30].

Utilizing CMOS technology, their approach implements an inhibitory response to

residual activity measured from spikes. This is demonstrated in Fig. 2.3.

Equations 5-7 from [30] were implemented to test this architecture:
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Figure 2.2: ADADELTA uses the history of an individual parameter’s changes
to infer its present learning rate η. Shown here are results from training the
LCA discussed in this work on the MNIST dataset and evaluating reconstruc-
tion performance. Digits trained is on a logarithmic scale to make it clear that
ADADELTA outperforms other learning rate schedules early on and maintains its
lead. Compared with a static learning rate or an exponentially decaying learning
rate, ADADELTA converges much more quickly to an optimal solution.
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Figure 2.3: Shapero et al.’s modified SLCA architecture, Fig. 2(b) in the original
paper [30]. In contrast with the LCA where local competition is constantly enforced
based on the activity of each output neuron, the SLCA uses a Low-Pass Filter
(LPF) of the spiking activity to determine which neurons need to be inhibited; no
inhibition will occur before a spike. This architecture was realized in Shapero et
al. through a capacitor attached to an inverter fed by the spikes; the voltage on
the capacitor controls a PMOS transistor which drains a neuron’s state in a rate
proportional to the ΦTΦ− I term. For more information see Fig. 5 in the original
paper [30].

v̇(t) = u(t)− λ, v(t−) > 1 =⇒ v(t+) = 0,

â(t) = max(u(t)− λ, 0) = Tλ(u(t)),

ui(t) = bi −
∑
j 6=i

(
Hi,j

∑
k

α(t− tFBj,k )

)
,

where v is analogous to the voltage of a capacitor indicating that neuron’s state, u

is the current into that capacitor, â is the firing rate of each neuron (the output of

the network; the sparse code), b is the dot product of the neuron’s receptive field

and the input vector, α(t) = U(t)e−t/τ where U(t) is the heaviside step function,

τ is a time constant, Hi,j is φTφ− I just like G in the analog algorithm, and tFBj,k

is the kth firing of the jth neuron.
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The α(t − tFBj,k ) term in ui(t) provides an impulse response for inhibition af-

ter each spike, preventing the over-stimulation of any individual element in the

reconstruction. The original LCA’s self-inhibitory term −um(t) is replaced by

the spiking behavior, and explicit thresholding of the output is no longer neces-

sary since a spike might not be generated even on a column exhibiting a non-zero

charge.

Dictionary updates with the SLCA were accomplished identically to the LCA:

Oja’s rule produces changes in the weight matrix based on the residual, using

ADADELTA to adjust the learning rate.

2.3 Simplified, Spiking Locally Competitive Algorithm (SSLCA)

The Simplified, Spiking Locally Competitive Algorithm (SSLCA) is a modified ver-

sion of the LCA with emphasis on low power and implementation simplicity rather

than accuracy. Approaching the problem from this angle helps to cement under-

standing of the trade-offs involved in these algorithms, as well as better defining

the trade-offs available.

To implement the original LCA in hardware, a memristive crossbar is required,

as well as isolation circuitry to deal with sneak paths and convert current through

the memristive devices into a voltage [36]. Additional circuitry would need to be

added to implement the subtraction of competing representations as in Eq. (2.1).

The circuitry to implement inhibition based on local competition would be sub-

stantial: for M neurons, M2 inhibitory forces are required, as each neuron exerts a

force on each other neuron including itself to work with non-normalized dictionary

elements. Each inhibitory force has its own weight and is multiplied by the current

activity of one of the neurons. Shapero et al.’s SLCA also requires M2 transistive
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Figure 2.4: The proposed Simple, Spiking Locally Competitive Algorithm archi-
tecture. Note that neurons do not need any communication or configuration from
other neurons, unlike the LCA and SLCA. The only state shared within the ar-
chitecture is a single bit indicating whether or not any neuron is currently firing.
Black dots at the crossbar junctions represent memristive devices. Row headers
were, in this work, a simple passthrough for the input spikes. In future work, the
row header would be responsible for providing inhibition amongst neurons without
requiring increased network connectivity; this is discussed in Section 2.3. Column
headers in this work were a simple capacitor, a switch to drain the capacitor in-
stantly in the event that any neuron fires, and a Schmitt Trigger which detected
when the capacitor’s voltage exceeding a firing threshold, triggering an output
spike. In a true hardware implementation, both row headers and column headers
would be responsible for providing write voltages to update the memristive devices
as part of the training cycle.
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devices to implement inhibition [30]. The primary fault of these architectures is a

lack of scalability: even though power consumption does not scale as M2, the area

required to implement the circuit does.

SSLCA avoids this issue by opting to eventually implement inhibition through

the memristive crossbar itself rather than with additional hardware. Neurons and

inputs are handled by row and column headers attached directly to the memristive

crossbar that do not communicate with one another. This avoids the aforemen-

tioned scalability issue, while also being a very simple architecture to reason about.

The resulting architecture is demonstrated in Fig. 2.4. The SSLCA consists of row

headers between the input spikes and a memristive crossbar, feeding into column

headers (neurons) which fire when sufficiently stimulated. The row headers in this

work were implemented as simple passthroughs; in a real architecture, the row

header would be responsible for allowing input spikes through during encoding

as well as setting appropriate voltages to change memristor states during train-

ing. The column headers in this work were implemented as a capacitor attached

directly to the crossbar, a Schmitt Trigger to detect when the capacitor is suf-

ficiently charged to trigger an output spike, and a switch to drain the capacitor

instantly when any neuron fires. In a real architecture, the column header would

also be responsible for setting appropriate voltages to write the memristive devices

as needed by the learning algorithm.

One downside of the SSLCA implementation used in this work is that, unlike

the LCA or SLCA, there is no mechanism for inhibition amongst neurons. Every

neuron firing is independent of all previous firings, meaning that there was limited

collaboration during the tasks investigated in this work (e.g., Chapter 3). The

SSLCA’s architecture does not preclude this functionality: the row header may be
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modified by using a PMOS transistor to gate input spikes, where the gate of the

transistor is charged through the memristive crossbar when a neuron fires. Since

connections between neurons and input rows have higher conductance when the

associated input is an important part of the associated receptive field, the result

would be that inputs that are well-represented by the current spiking pattern

would have subsequent input spikes dampened, allowing other neurons to fire in

response to the patterns in the input not covered by previous neuron firings. The

implementation and tuning of this part of the network was outside of the scope of

this work, and as such was not included.

For a crossbar with neuron capacitors directly attached to the nanowires, and

all input lines treated as voltage sources, the capacitor charges may be solved

directly. Given a C for the capacitance of a neuron, Vneuron as the voltage of that

capacitor, and for each input row a voltage Vi and a conductance Gi provided by

a memristive device connecting the two nanowires, the general formula is:

C
∂Vneuron
∂t

=
∑
i

(Vi − Vneuron)Gi.

By assuming an input row i spikes to voltage Vset with a mean of Ki activity

(on for Ki, off for 1−Ki), and is grounded the rest of the time, this becomes:
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C
∂Vneuron
∂t

=
∑
i

(
Ki(Vset − Vneuron)Gi

+ (1−Ki)(0− Vneuron)Gi

)
,

=
∑
i

(KiVset − Vneuron)Gi,

= Vset
∑
i

KiGi − Vneuron
∑
i

Gi.

The Laplace transform may be used to solve this:

Q1 =
∑
i

Gi, (2.2)

Q2 = Vset
∑
i

KiGi, (2.3)

L{Vneuron}s(Cs+Q1) = CsVneuron,t=0 +Q2,

Vneuron(t) =
Q2

Q1

(1− e−tQ1
C ) + Vneuron,t=0e

−tQ1
C . (2.4)

Using this equation to parameterize the network required fixing all but one of

the variables. To do this, the first step was to establish sensible values for Q1

and Q2. From Eqs. (2.2) and (2.3), Q1 is the full conductance of the row, and Q2

is a combination of Vset, which is fixed based on the crossbar’s specification, and

each element’s conductance multiplied by the anticipated activity of that element’s

input row. As illustrated in Section 2.1, the training algorithm used to derive the

dictionaries in this work attempts to minimize the reconstruction error. If an

image is processed by the network repeatedly such that the resulting sparse code
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consists of a single, non-zero coefficient, then the training algorithm will adapt

the dictionary element corresponding to the non-zero coefficient to be a perfect

representation of the input image. Assuming therefore that the average response

should have a single spike at time t, the asymptotic behavior of each column

will be itself a representation of the input vector. Therefore, the conductance Gi

and the input intensity Ki will be linearly related. By letting Gi = Gmaxgi and

Ki = Kmaxki, we can define some distribution χ that describes the distribution of

values in the input space. For a network with M inputs, Q1 and Q2 can then be

asymptotically inferred to be:

Q1 = MGmaxχ,

Q2 = MVsetKmaxGmaxχ2. (2.5)

In practice, χ was approximated as a beta distribution with the same mean as

the set of expected input values. The effects of changing the mean of χ are shown

in Fig. 2.5.

To fully parametrize the network, C and t must also be defined. Setting

t = tavgF ire (the desired average time between spikes) enables the calculation of

Vneuron(tavgF ire), a threshold voltage that will spike in the average, trained case at

the desired rate. Furthermore, leaving the capacitance C free is beneficial as it

allows us to trade between stability and accuracy. Low values of C produce higher

firing voltages (Eq. (2.4)) which may be beneficial to overcome op-amp input offset

voltages, but the capacitor charges quicker, relying more on sporadic activity and

less on the average patterns of the input spikes. The relationship between firing

22

mperkows
Highlight



0.2 0.4 0.6 0.8

mean(χ)

0.01

0.02

0.03

0.04

0.05

0.06
Fi

rin
g

Th
re

sh
ol

d
(V

)

Figure 2.5: Plot showing the relation of χ to Vneuron to fire after 1 ns. Error bars
are from estimation of χ for Q1 and Q2.

voltage and capacitance is demonstrated in Fig. 2.6.

A statistic worth knowing about the chosen firing threshold is the ratio of time it

takes an untrained (randomly initialized) neuron to fire when compared to a trained

neuron. Equation (2.4) can be rearranged to solve for t when Vneuron,t=0 = 0,

yielding:

t =
−C
Q1

ln

(
1− Vneuron(t)

Q1

Q2

)
. (2.6)

Taking the ratio of tuntrained to ttrained (which will have different values for Q1

and Q2) reveals that capacitance does not affect the ratio of firing between an

untrained neuron and a trained neuron. The only relevant variables for the ratio
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Figure 2.6: Plot demonstrating effect of specifying capacitance on the trigger volt-
age used to determine if a neuron is firing, while keeping an average firing rate of
1 GHz. Error bars are from estimation of χ for Q1 and Q2.
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Figure 2.7: The firing thresholds required to achieve different untrained to trained
firing time ratios. This is dependent on the statistics of the dataset. Instability in
firing thresholds with a high untrained to trained fire time ratio is caused by very
small differences in voltage creating a large difference in ratio as the trigger voltage
approaches the maximum neuron voltage of Q2/Q1 (from Fig. 2.7). Approaching
this limit is also what causes the firing threshold to flatten out as on the right side
of the graph.

are the firing threshold, Vneuron, and the receptive field estimators Q1 and Q2.

The trained estimators are evaluated identically to Eq. (2.5); untrained estimators

may be obtained by modifying Q2 to use χ1χ2 in place of χ2, indicating that the

receptive field and the input do not match. The effect of different firing thresholds

on the firing ratio is explored in Fig. 2.7.

The neuron trigger voltage, Vfire = Vneuron(tavgF ire), may thus be parametrized

by area (choosing C) or by op-amp bias voltage (choosing Vfire directly and solving

for C; Eq. (2.4)). The chosen trigger voltage can be evaluated for viability by
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calculating the untrained to trained firing time ratio, ensuring that this does not

exceed the expected number of spikes (Eq. (2.6)). What remains is a network

that is fully parametrized based on the desired performance characteristics and

the physical properties of the network and input datasets (resistive range of the

memristive device and the expected statistics of the input data). For greater

resolution in the output, the network must only be simulated for a longer time.

The experiments in this work were parametrized by the average number of

output spikes (spike resolution) and the relative density of the input spikes (spike

density). These concepts are demonstrated in Fig. 2.8. In practice, spike resolu-

tion would dictate the quotient of the simulation time and tavgF ire. Spike density

would dictate the duty cycle of input spikes coming from a signal of maximum

intensity, and is identical to Kmax. Experimental parameters are explored more in

Section 3.2.3.

Dictionary updates with the SSLCA were accomplished identically to the LCA

and SLCA: Oja’s rule produced changes in the weight matrix based on the residual,

using ADADELTA to adjust the learning rate.

2.4 Memristor

There are many different memristor models available; 14 of these were surveyed in

my recent collaboration for NANOARCH 2015 [36]. These models differ in terms

of resistive range, switching characteristics, physical viability, and a number of

other factors. That work investigated each model in the context of a 500 MHz

clock, with the goal of accomplishing state transitions within a single clock cycle

(2 ns). Reproduced in Table 2.1 are the memristors models surveyed as well as

their read characteristics. Figure 2.9 demonstrates how some memristor models
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Figure 2.8: The SSLCA is parametrized according to Spike Resolution (average
number of spikes in response to an input stimulus) and Spike Density (duty cycle
of an input signal with maximum intensity). Spike Resolution is determined by the
product of simulation time and spike rate; running the same spike rate for longer
will generate more spikes, enhancing the resolution of the output. Spike Resolution
is divided out when computing the analog-equivalent output of the SSLCA, such
that a neuron with an output of 1 means that it was the only neuron that spiked.
Spike Density dictates what percentage of the time a spiking line (input or output)
will be active high when it is maximally saturated. For example, a Spike Density
of 100% would look like a DC voltage at maximum input, and a square wave with
equal high and low times for an input of 50%. With a Spike Density of 50%, a
maximum input would look like the aforementioned square wave, while an input
of 50% would create a square wave with a low time three times as large as its high
time.
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Figure 2.9: Device resistance varies for some models as voltage increases, while
for other models it remains the same. This makes it very important for crossbar
architectures to standardize on a consistent read voltage Vread when discussing
resistances, or account for the non-linearity. Yang et al.’s model breaks down
around 2.6 V, causing that line to abruptly end. Eshraghian’s model breaks down
around 2 V in our experiments. Ratios for all models between 0.1 V and their
breakdown voltages (or 4 V) are in Table 2.2.

change restistance when exposed to different voltages. Table 2.2 shows the power

consumption from a crossbar configuration learning the MNIST dataset, the same

task as in Chapter 4.

For the experiments in this thesis, it was desirable to use a memristor that

was based on a physical device (such that a fabricated version would have similar

performance to simulations), demonstrated a quick switching time (suitable for

500 MHz), and was low power. Out of all of the models surveyed, the Yang et al.

model best satisfies these three criteria, and so was chosen for this work.

One problem that a hardware implementation with memristors might also face

is an inability to precisely represent different weight values. In my other published

work, this is investigated in detail [34,35]. That research looks at how fine of control
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Table 2.1: Models studied and their characteristics
max(Vread)

Memristor Type (V) Rmax (kΩ) Rmin (kΩ)
Batas [2] * 4.0 87 5.5
Berdan [4] TiO2 4.0 94 5.0
Biolek [5] * 3.9 9.4 0.59
Merrikh-Bayat [19] TiO2 1.2 280 17
Eshraghian [7] † 0.031 1 400 000 79 000
Lehtonen [16] * 0.82 410 000 28 000
Pershin [25] * 0.000 007 0 9.6 1.5
TEAM [14] * 0.48 0.13 0.061
Yang [39] Ag,Cu;

TiO2

1.4 180 54

Jo [11] Ag/Si 4.0 370 000 24 000
Miao [20] TaOx 4.0 17 1.1
Miller [21] TiO2 4.0 1.4 0.085
Oblea [22] Ge2Se3;

Ag
0.32 11 0.70

Jo & Lu [12] Ag/Si 2.9 12 0.72

* These models are not based on a physical device. Models that are based on a physical
device will have their group name in bold in all tables from this paper.
† Eshraghian is based on experimental data from a physical device, but they did not
have access to the device to further test their model.

Each device in the survey is listed here along with its chemistry, if applicable. max(Vread)
is defined as the positive voltage at which 1000 cycles on a 500 MHz clock will produce a
change in the logical weight W of the device (bounded on [0, 1]) of 0.01, or 4 V, whichever
is smaller. Rmax and Rmin are the states of the device when mapped to W = 0 and
W = 1, respectively. The range represented by these values is 90% of the device’s physical
limits. The overall range was constrained to prevent excessive switching times at the
extremes. Resistances were evaluated at Vread = min(0.1 V,max(Vread)), in order to
better allow comparisons between devices that change resistance with voltage. Table 2.2
and Fig. 2.9 explore the effects of voltage on resistance for different models.

is needed over the memristor’s state in order to effectively accomplish the sparse

coding task. The results showed that 16 states, or 4-bit resolution, was sufficient

to reasonably reconstruct analog datasets and perform well on the MNIST task.

While precision affects hardware realizations of memristive algorithms, it was

not considered as part of this work’s simulations. Having already investigated the
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Table 2.2: Power during crossbar evaluation

Memristor R(Vmax)
R(0.1)

Vread (V) Power (µW)

Batas 1.0 0.10 68
Berdan 1.0 0.10 74
Biolek 1.0 0.10 630
Merrikh-Bayat 0.009 0.10 22
Eshraghian 0.05 0.031 0.000 46
Lehtonen 0.000 06 0.10 0.013
Pershin 1.0 7× 10−6 0.000 001 4
TEAM 1.0 0.10 11 000
Yang 0.4 0.10 9.9
Jo 0.3 0.10 0.015
Miao 0.6 0.10 340
Miller 1.0 0.10 4400
Oblea 1.0 0.10 530
Jo & Lu 1.0 0.10 520

Evaluation properties of different memristor models. The second column, R(Vmax)
R(0.1) , de-

notes a sample ratio of each device’s resistance when evaluated at the device’s breakdown
voltage or 4 V (whichever is smaller) and 0.1 V. A value of 1.0 indicates that R = f(W ),
and is independent of voltage. Vread is the normalized read voltage used to compute
power draw during crossbar evaluation, and is the minimum of max(Vread) and 0.1 V to
allow for easier comparison between devices. Power is the average power consumed per
output column (784 devices) from a network trained via LCA on the MNIST dataset.
Pershin’s power is substantially lower than the others due to its incredibly low Vread,
deriving from the fact that it is a binary model and was not constrained by actual device
measurements.

effects of precision, and recognizing that each algorithm would suffer similarly, it

was deemed that comparing the algorithms with analog (floating point) weights

would be sufficient for this thesis.
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3

Reconstruction

The quality of a sparse coding algorithm can be determined partly from how much

loss occurs between the original signal and a reconstruction based on the sparse

code. Significant loss between the original and the reconstruction indicates that

the algorithm does a poor job retaining specific details from the input, and might

be inefficient at conveying information needed for machine learning tasks further

down, e.g., an image recognition pipeline. This chapter explores the three ar-

chitectures presented in Chapter 2 in the context of generating sparse codes and

reconstructing the original input.

3.1 Methodology

Sparse coding involves translating an input signal to a different basis which can

represent those input signals with fewer non-zero coefficients. This sparse basis

may be translated back into the original signal’s space, resulting in a reconstruc-

tion of the original signal. The difference between the original signal and the

reconstruction is called the residual.

In this work, the Normalized Root-Mean-Square Error (NRMSE) of the residual

is used to evaluate how accurately a sparse coding system can encode image patches

from a Natural Image Dataset Containing 10 Images (NAT10; Fig. 3.1). The

NRMSE’s value is a representation of the inaccuracy of each individual pixel in

the reconstructed patch, with extra weight given to outliers (because it is calculated

as an L2 norm).
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Figure 3.1: Example images from the NAT10 dataset used to evaluate image re-
construction in this work. Each image in this dataset was scaled to 128×128 pixels
with full RGB color.

Each of the 10 images in the NAT10 dataset used for this task were divided

into patches of 8 × 8 non-overlapping regions. Of these patches, 2048 were used

to train LCA, SLCA, and SSLCA models. Training patches were shuffled to avoid

over-training a specific feature (e.g. the color blue) too early. The remaining

512 patches were used to evaluate the reconstruction fidelity of each algorithm

at various points throughout training. Training occurred across two iterations of

the dataset to give algorithms ample time to demonstrate asymptotic behavior.

All experiments were repeated 5 times; error bars shown indicate the standard

deviation.

Experiments were run using the job stream parallelization library (Appendix A)

and organized using the git-results plugin (Appendix B); both of these packages

were products of my work leading up to this thesis.
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Figure 3.2: Reconstruction performance throughout training on 8 × 8 patches
of the NAT10 dataset. The analog, non-spiking algorithm performed the best,
followed closely by Shapero et al.’s spiking algorithm. The architecture designed
for this work performed marginally worse. The reasons for this are addressed in
Section 3.2.3.

3.2 Results

NRMSE results can be seen in Fig. 3.2. The corresponding activity (the portion

of active neurons contributing non-zero coefficients to the sparse code) is demon-

strated in Fig. 3.3. An analysis of each algorithm’s performance follows.

3.2.1 LCA

The LCA implemented for this work had no accuracy restraints other than the cho-

sen sparsity and the number of neurons. That sparsity is shown through output
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Figure 3.3: Activity (portion of neurons actively contributing to output coeffi-
cients) for each algorithm when reconstructing 8×8 patches of the NAT10 dataset.
Algorithms exhibiting higher activity produced less sparse of an encoding; that is,
they are likely to have a lower NRMSE because more neurons were contributing
to each reconstruction. Higher activity allows neurons to learn parts of an image
rather than an entire image. Too high of activity leads to each neuron learning a
single element of the input - essentially re-encoding the input identically to how
it was presented. Algorithm parameters (λ for LCA and SLCA) were adjusted
to target 20% activity. SSLCA had no parameter to adjust this metric, which is
discussed in Section 3.2.3.
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Figure 3.4: Progression of LCA training for two different testing patches; leftmost
is the target patch. The five following images are after 34, 136, 644, 1088, and 4096
patches trained. An excess of activity initially (Fig. 3.3) lead to excessive brightness
early in training. This was quickly learned out, and the final reproduction had a
similar color quality to the original patch. The LCA also did a reasonable job of
reconstructing a bright streak in the second example patch.

Figure 3.5: Example elements from the final dictionary for the LCA. Note how
the 20% activity indicated in Fig. 3.3 leads to each neuron representing a large
swatch of color at a specific location. Several of these neurons added together can
successfully reproduce broad characteristics from any input.
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activity in Fig. 3.3. Performance of the LCA is the optimal baseline for recon-

struction in this work. The spiking variants presented attempt to approximate

the algorithm (which includes local competition), but as they are spiking and not

analog, the resolution of each neuron’s output response is diminished. The pro-

gression of the LCA reproducing a particular test patch throughout the training

process can be seen in Fig. 3.4.

The LCA utilizes competition between neurons and prevents overrepresentation

of the input by including an inhibition term based on the other outputs. This

resulted in each receptive field learning to represent a distinct position and color

quality of each patch (Fig. 3.5). Since the algorithms in this work only have 50

receptive fields to train, while there are 8 × 8 × 3 = 192 inputs, the ability to

effectively combine several receptive fields during reconstruction helps the LCA

achieve a final NRMSE of 0.074, substantially lower than the SSLCA’s 0.13 or the

SLCA’s 0.095.

It should be noted that in some instances of sparse coding, it is expected that

the learned receptive fields will be gabor filters [26]. Other works force gabor fil-

ters onto the learned fields [18]. However, to achieve these patterns, the learned

weights must be allowed to go negative as well as positive. This work enforced

non-negative weights as well as inputs, as this is easier to reason about and pro-

duces simpler hardware implementations. Versions of these architectures featuring

both negative inputs and weights have been investigated in other works [35]. For

convenience, Fig. 2.1 demonstrates the necessary modifications to compensate for

negative weights and inputs in an LCA architecture.
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Figure 3.6: Progression of SLCA training on two different test patches: leftmost is
the target patch, and the remaining five images are reconstructions after 34, 136,
644, 1088, and 4096 training patches. Note that the first reconstruction after 34
patches is clamped to all-white. Similarly to the LCA (Fig. 3.4), an initial pattern
of over-activity lead to excessive reconstruction brightness. As training progressed,
the reconstructions approached a smoothed version of the original input, very
similarly to the LCA. The main difference between LCA and SLCA is that SLCA
takes longer to converge. The SLCA also demonstrated slightly poorer resolution,
lightening the upper-right corner on the second test patch but not reproducing the
streak.

Figure 3.7: Example elements from the final dictionary for the SLCA. Similarly to
the LCA, the 20% target activity lead to each neuron representing large patches
of color at different locations. The SLCA’s patches are less smoothed than the
LCA’s in large part due to the SLCA exhausting more training examples before
converging to 20% activity.
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3.2.2 SLCA

Shapero et al.’s Spiking LCA performed fairly well, achieving a final NRMSE of

0.095. It converged much more slowly than either the LCA or SSLCA (Fig. 3.2).

Like the LCA, the SLCA implements inhibition in terms of activity amongst other

neurons. This lead to the receptive fields representing patches of color at different

locations, combining several receptive fields to yield an accurate reconstruction

(Figs. 3.6 and 3.7).

Overall, performance for the SLCA was quite similar to the LCA. There are two

reasons that the SLCA does not reach the LCA’s performance. The first reason

is that counting spikes has a much more coarse resolution than the analog values

used by the LCA. The second reason is that inhibition can only occur after a spike

is already triggered. Initially, this leads to much higher activity than that seen

in the LCA. Once neurons have trained to represent more specific receptive fields,

this does not pose a problem for the algorithm. Still, this added substantially to

the initial training time needed by the SLCA to reach peak performance.

3.2.3 SSLCA

The SSLCA reconstructed patches less accurately than both LCA and SLCA.

While less accurate, it converged the fastest and also produced significantly more

sparse encodings (Figs. 3.2 and 3.3). The NRMSE of 0.13 indicates that the average

RGB pixel value was off by 13% of the spectrum, which is significant. However,

the improved sparsity might be advantageous.

The main shortcoming of the SSLCA as implemented for this work was that

it did not address inhibition as a result of representation by other active neurons.

This lead to overrepresentation of certain image areas, and meant that each neuron
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Figure 3.8: Progression of SSLCA training on two different test patches; leftmost
is the target patch, and the remaining five images are reconstructions after 34, 136,
644, 1088, and 4096 training patches. Unlike LCA and SLCA (Figs. 3.4 and 3.6),
the SSLCA matches brightness and color very quickly. This is partly due to the
algorithm being configured using the average statistics of the input dataset. Lower
activity also contributes; the SSLCA exhibits only 8% activity versus the LCA
and SLCA’s 20% (Fig. 3.3). Since there are fewer non-zero coefficients, Oja’s rule
dictates that fewer neurons get trained each step, resulting in faster convergence.
The second test patch is notably worse with SSLCA; the changing of color be-
tween the last two reproductions indicates that one of the 50 output neurons was
contested, a side-effect of an inadequate number of neurons participating in the
reconstructions.

Figure 3.9: Example elements from the final dictionary for the SSLCA. Unlike
the LCA or SLCA where dictionary elements represent locational patches of color,
the SSLCA elements come to represent whole images. This results from higher
output sparsity (Fig. 3.3), which occurs because the SSLCA as implemented in this
paper has no means of inhibiting parts of the input that are already represented
by previous neuronal firings. Another aspect worthy of note: these dictionary
elements are far brighter than those of either the LCA or SLCA (Figs. 3.5 and 3.7).
This is due to the firing threshold Vneuron being determined from a perfect match
to the input. This is further explained in Section 3.2.3.
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firing needed to represent the image as a whole rather than a part of the input

image. In other words, multiple receptive fields did not collaborate significantly to

reproduce the input; this is evident from the final receptive fields, shown in Fig. 3.9.

Each receptive field represented a whole image rather than a color and location

pairing as was the case with LCA and SLCA. Steps to address this difficiency

are discussed in both Section 2.3 and Chapter 7; briefly, dampening the effects of

input spikes when that particular input is well-represented by the current spiking

pattern should suffice.

Another aspect of the SSLCA reconstructions worth noticing is how much

brighter the final dictionary elements were than the input patches (compare Fig. 3.9

to Fig. 3.8). This was because the firing threshold Vneuron was determined based

on an optimal match between the input and the receptive field (Section 2.3). The

training set and the test set both violated this assumption, resulting in a lower

average spiking rate than was anticipated. Since reconstructions are based on the

product of the dictionary elements and the spike rate, Oja’s rule translated lower

spike rates into brighter receptive fields. This could be corrected in future work by

making more accurate assumptions for Q1 and Q2, recognizing the collaboration

between several neurons for the ideal (trained) case.

3.3 Discussion

The final NRMSEs for the LCA, SLCA, and SSLCA were 0.074, 0.095, and 0.13,

respectively. The primary difference between the LCA and SLCA was revealed to

be due to a difference in spiking resolution as well as the inability for a spiking

algorithm to implement inhibition before any spikes fire. The SSLCA performed

worse than either of the other algorithms as it did not represent inhibition on
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account of patterns in the input that were already represented by previous spikes.

Even so, all three algorithms successfully reproduced the main characteristics of

each patch, and the final NRMSEs were reasonably close together. Chapter 4 looks

at the effect of these reconstruction quality differences on a machine learning task.
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4

Classification of Handwritten Digits

While the LCA family of algorithms were designed to minimize the sum of the error

in the residual and a sparsity term [27], this does not guarantee the transmission

of information necessary for machine learning tasks. Details that are significant

for reconstruction may not aid classification, and broad patterns that might not

significantly affect a reconstruction’s NRMSE might be important for classifica-

tion. Keeping the reconstruction qualities of each algorithm in mind, this chapter

investigates each architecture’s ability to provide information needed to classify

handwritten digits in the MNIST database.

4.1 Methodology

A sparse coding algorithm’s ability to accurately encode the input signal is not

necessarily related to its ability to retain meaningful information for classification.

To demonstrate this, the sparse code from each algorithm explored in this work was

passed to a Single-Layer Perceptron Network (SLP) which was trained to classify

digits from the MNIST handwritten digit database [15]. The MNIST database has

60 000 digits, 50 000 of which are used for training, and 10 000 of which are used

for testing.

Similarly to Chapter 3, each algorithm had 50 dictionary elements and was

trained across two iterations of the MNIST database and evaluated for classification

accuracy. The scaling of performance across number of nodes was demonstrated in

prior work [35]; this work focused on the differences between algorithms instead.
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For this reason, 50 output neurons were used for each algorithm. The classification

score presented is the percentage of correct classifications from the SLP based on

the training data. All experiments were repeated 5 times; error bars shown indicate

the standard deviation.

Experiments were run using the job stream parallelization library (Appendix A)

and organized using the git-results plugin (Appendix B); both of these packages

were products of my work leading up to this thesis.

4.2 Results

Classification results are shown in Fig. 4.1. These are supported by the NRMSE

on this task in Fig. 4.2 and the activity for the encoding passed to the supervised

layer in Fig. 4.3. Each algorithm’s performance is discussed in the subsequent

sections.

4.2.1 SLP

For a baseline, the raw MNIST data was passed directly to the SLP layer used

for classification. Figure 4.1 clearly demonstrates that an SLP network using the

pixel data as inputs outperformed the other algorithms presented in this work.

This is due to the restriction that those algorithms were limited to 50 neurons,

and thus 50 receptive fields. In other words, the resolution of the sparse codes was

not sufficient for the task at hand. Performance was not significantly lower for

any sparse coding algorithm than the SLP on its own though, and the number is

sufficient to compare the unsupervised algorithms to one another.

In practice, the sparse coding algorithms with only 50 neurons might still pro-

vide benefits over the SLP on its own, as they would only need to transmit a sparse
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Figure 4.1: Classification performance throughout training on the MNIST dataset
with 50 neurons. Performance of the SLP being superior to the others was a result
of 50 neurons being too small for the task at hand; however, for a comparative
analysis between algorithms doing the same thing, the number was sufficient. Ulti-
mately, the LCA outperformed both the SLCA and SSLCA. More interestingly, the
SSLCA significantly outperformed the SLCA, even though the SLCA had higher
activity and produced a similar NRMSE on this task (Figs. 4.2 and 4.3). This
phenomenon is discussed between Figs. 4.6 and 4.8.
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Figure 4.2: Reconstruction performance throughout training on the MNIST
dataset. All algorithms settle to a similar NRMSE despite very different levels
of activity (Fig. 4.3).
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Figure 4.3: Activity of sparse coding layer throughout training on the MNIST
dataset. Similar to Fig. 3.3 from Section 3.2, the LCA and SLCA both demon-
strated higher activity than the SSLCA. The LCA and SLCA were both λ-adjusted
in the same way, however the LCA would not go lower than 0.14 activity on this
task. As shown, the λ chosen was quite high and initially suppressed most of the
LCA activity. Once the algorithm adapted, its dictionary trended towards lines
rather than whole digits as with the SLCA and SSLCA (Figs. 4.4, 4.6 and 4.8).
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Figure 4.4: LCA reconstruction performance throughout training on the MNIST
dataset. A very high λ inhibited visible reproductions early, but yielded to reason-
able reconstructions. High initial λ was necessary for a fair comparison amongst
algorithms; otherwise the LCA would learn large pixels and demonstrate high ac-
tivity).

Figure 4.5: Sample dictionary elements from LCA after training. Even with a high
λ enforcing low activity, LCA learned digit edges as opposed to the whole digits
learned by the SLCA and SSLCA (Figs. 4.7 and 4.9).

subset of 50 values to a classification network rather than 784 values.

4.2.2 LCA

Classification accuracy by the LCA was decent, surpassing 85% with only 50 neu-

rons. This matches prior results [35]. Figure 4.4 is provided to demonstrate the

reconstruction quality of the LCA networks that achieved this result.

In this work, the LCA networks began with extremely low activity due to a

high λ. The high initial λ was necessary to get the overall activity at the end of

the experiments to better match across algorithms. Without a high λ, the LCA
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Figure 4.6: SLCA reconstruction performance throughout training on the MNIST
dataset. The SLCA performed notably worse than the LCA with only marginally
worse NRMSE. From these reconstructions, it is clear that the SLCA often re-
produced several digits with the same neuron combination. While this helped the
SLCA minimize reconstruction error in its initial high-activity state (Fig. 4.3), the
ambiguity confused the SLP.

Figure 4.7: Sample dictionary elements from SLCA after training. The duality of
some of these neurons is apparent; the 3rd receptive field is primarily a 7, but also
has the loop element from a 9. The 5th element could be either a 2 or an 8. This
ambiguity prevented the SLP from effectively differentiating certain digits.

would learn large dots analogous to pixels in this task, very similar to the NAT10

reconstructions from Section 3.2.1. Interestingly, while both the SLCA and SSLCA

exhibit low activity and learned whole digits as their receptive fields, the LCA’s

final dictionary featured digit edges instead (Fig. 4.5). Even higher values of λ

than the one used resulted in no activity at all.
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4.2.3 SLCA

The spiking model of the LCA as proposed by Shapero et al. performed the worst,

achieving only 76% on the classification task. This was a surprising result since

its NRMSE was virtually identical to the SSLCA (Fig. 4.2) and it produced more

activity (Fig. 4.3). Looking at its final dictionary in Fig. 4.7 and its reconstructions

throughout training in Fig. 4.6, the reason for this poor performance is apparent:

most of the neurons learned to represent a combination of two digits, confusing

the SLP. While this resulted in a lower reconstruction error with the initially

high activity of the SLCA, in the long term it greatly hurt the SLCA’s viability

for classifying digits. Realistically, this effect could have happened to any of the

algorithms in this paper. What left the SLCA particularly vulnerable to it was

its extremely high activity early in training, which led to many neurons learning

together. The LCA and SSLCA, whose initial activities were both much lower,

avoided this.

4.2.4 SSLCA

The SSLCA outperformed the SLCA but not the LCA, finishing with an average

accuracy of 81% on MNIST. The main reason it outperformed the SLCA was its

lower initial activity, avoiding the problem where each receptive field learned to

represent more than one digit, which confuses the supervised SLP doing the actual

classification. The LCA most likely outperformed the SSLCA because of its higher

activity and better collaboration amongst neurons, similar to its performance char-

acteristics on the reconstruction task in Chapter 2. Higher activity combined with

meaningful parts of digits meant that the SLP received meaningful combinations

from the LCA, creating more than 50 distinct combinations. The SSLCA, on
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Figure 4.8: SSLCA reconstruction performance throughout training on the MNIST
dataset. Unlike the LCA and SLCA which both had higher activity than the
SSLCA, these reconstructions are very targeted to be a single digit. This the effect
of combining Oja’s rule with very low activity: each receptive field was affected
by training infrequently, and learned an average representation of a specific digit.
This can also be seen in Fig. 4.9.

Figure 4.9: Sample dictionary elements from SSLCA after training. Unlike the
LCA or SLCA, each dictionary element very clearly learns to represent a single
digit. This is due to the combination of Oja’s rule and lower activity, leading to
each receptive field being updated fewer times, in more specific conditions.
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the other hand, produced very clean receptive fields, but no combination of those

receptive fields would imply a different digit classification.

4.3 Discussion

This chapter demonstrated that reconstruction performance does not necessarily

correlate to an algorithm’s ability to convey information necessary for classifica-

tion. The LCA still performed best, with 85% accuracy. To accomplish this high

figure, it leveraged multiple receptive fields working together to provide meaningful

information. The SSLCA followed with 81% accuracy, demonstrating very clean

receptive fields that correlated to specific digits. The SLCA performed the worst

with 76% accuracy. This was shown to be a symptom of the SLCA’s tendency to

have very high activity early in the training process, resulting in neurons that were

pulled several different directions and learned to represent hybrids of two different

digits. That situation would be avoidable by using a different λ threshold, which

would allow the algorithm to have a larger set of active neurons.
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5

Power Consumption

The motivation for a simple, spiking algorithm stemmed not only from ease of

implementation, but also from the thought that simplicity could yield substantial

power savings. The premise of the design was to connect the neuron state capac-

itors to the memristive crossbar without an operation amplifier (op-amp) specifi-

cally to avoid the power cost of operating an op-amp. This chapter investigates

the power consumption of the architectures presented.

5.1 Methodology

From the previously published memristor survey, the maximum read voltage for the

Yang et al. memristive device when using 2 ns read cycles is 1.4 V [36]. However,

using a lower voltage both consumes less power and produces a higher resistance

in the memristive device. Therefore, the experiments in this work used 0.7 V as

the read voltage. At 0.7 V, the resistive range of this device is 52 kΩ to 207 kΩ.

Power for the analog LCA was calculated assuming a virtual ground and omit-

ting the operational amplifiers (op-amps). Input voltage was scaled from 0 V to

0.7 V according to the intensity of the input signal. This setup lead to the crossbar

power consumption being equivalent to the sum of power at each junction in the

crossbar, including the bias column. Also missing is the power draw required to

subtract the bias column from each column’s output. While this could be done

with an op-amp for each column, another approach would be to digitize the volt-

age from each column, and subtract the bias’ digitization from each column’s in
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software.

For each memristive device in the LCA, the logical weight was converted to an

actual resistance based on the formula from my 2015 NANOARCH publication [36]:

Ri,j = R(Wi,j) =
RmaxRmin

Wi,jRmax + (1−Wi,j)Rmin

.

This equation was shown to exactly reproduce the desired dot product, contin-

gent on the ability to precisely set individual resistances.

The SSLCA’s power was calculated somewhat more precisely. Input spikes of

0.7 V were applied to input lines; while inactive, these lines are grounded. Charged

capacitors are discharged after each spike. To make comparison with the LCA

reasonable, the fire trigger op amp was also not included in the power consumption

of this design. Spikes were applied with a maximum duty cycle of 10% (spike

density 0.1).

In the SSLCA, memristive devices’ resistances were set based on conductance:

a maximum weight (1.0) mapped to the maximum conductance (19.2 µS). Smaller

weights are the appropriately scaled-down quantities of this conductance, down to

a minimum logical weight of W = 1
207
/ 1
52

= 0.251, or 4.83 µS.

The SLCA model was not experimentally evaluated for power as part of this

work, as it uses a large number of transistors which could not be simulated within

the scope of this work. However, Shapero et al., the proposers of the architec-

ture, implemented both the LCA and the SLCA on a Field-Programmable Analog

Array (FPAA) using 350 nm CMOS technology [29,30]. This was discussed in Sec-

tion 1.3.1. The figures derived for a task the same size as the Reconstruction task

presented in this work were 4.18 mW for the LCA and 21.0 mW for the SLCA. For

the Classification task, the projections were 11.8 mW for the LCA and 79.0 mW
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Figure 5.1: Power consumption on the Reconstruction and Classification tasks.
The Reconstruction task from Chapter 3 consists of mapping an input signal of
192 values to a sparse code with 50 values; the Classification task from Chapter 4
consists of mapping an input signal with 784 values to a sparse code with 50 values.

for the SLCA.

Experiments were run using the job stream parallelization library (Appendix A)

and organized using the git-results plugin (Appendix B); both of these packages

were products of my work leading up to this thesis.

5.2 Results

Figure 5.1 demonstrates the measured power consumption for the LCA and SSLCA

as presented in this paper as well as the extrapolated power from Shapero et al.’s

implementation of the LCA and SLCA. Shapero et al. notes that their SLCA

would eventually consume less power than their LCA implementation, as SLCA’s
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requirements grow as O(n) while LCA’s requirements grow as O(n
√
n) as the

number of neurons is increased [30].

Comparing the results between this work’s LCA and SSLCA on the Recon-

struction and Classification tasks (Fig. 5.1), it is apparent that the spiking nature

of SSLCA produced substantial power savings. A maximum-valued input had a

duty cycle of 10%; actual power savings were smaller because spikes always pro-

duce a full 0.7 V potential on the input line to the memristive crossbar, whereas

the LCA used voltage scaling to achieve different input values. Since Ohm’s law

dictates P = V 2

R
, voltage scaling is more effective than duty cycling. However,

voltage scaling requires more complex circuitry to achieve, potentially resulting in

further power penalties outside of the scope of this work.

The Shapero et al. estimates of power consumption on these tasks revealed that

efforts to improve the accuracy of the SSLCA would be well-founded: the SSLCA

consumed only 6.6% of the power as Shapero et al.’s SLCA and 28% of their LCA

implementation. Both the SLCA presented in this work and Shapero et al.’s SLCA

grow in complexity as O(n), so these savings should be consistent as the network

size grows.

Another key consideration is how well the measured power for each architecture

combines with each architecture’s performance on the Reconstruction and Clas-

sification tasks. Each architecture’s score from these sections was combined with

the estimated power in Figs. 5.2 and 5.3. For the Reconstruction task, the LCA

is the clear winner until power is around three times as important as NRMSE. At

that point, the SSLCA’s significantly lower power consumption makes it the algo-

rithm of choice. The Classification task demonstrated a smaller spread between
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Figure 5.2: Comparative score on the Reconstruction task in this work, calculated
by balancing the NRMSE from Chapter 3 against estimated power consumption for
each architecture (SLCA’s power comes from Shapero et al.). Power and NRMSE,
both quantities which are worse when larger, were normalized by dividing out the
worst architecture’s value for each. Each quantity was then scaled by α and 1−α,
respectively, to achieve the given score. LCA is the clear winner on this task, until
power becomes about 70% of the importance criteria, at which point the SSLCA’s
substantially lower power gives it the lead. Alterations to the SSLCA that might
help decrease the NRMSE on this task, making it the clear choice across the board,
are discussed in Sections 2.3 and 3.2.3 as well as Chapter 7.
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Figure 5.3: Comparative score on the Classification task in this work, calculated by
balancing the reciprocal of classification accuracy from Chapter 4 against estimated
power consumption for each architecture (SLCA’s power comes from Shapero et
al.). The reciprocal of classification accuracy was chosen so that large values
would indicate worse performance. Both the power and reciprocal of classification
accuracy were normalized by dividing out the worst architecture’s value for each.
The remaining quantities were then scaled by α and 1−α, respectively, to achieve
the given score. While the LCA’s superior classification rate gives it the edge when
power is unimportant, power needs to be only 22% of the performance criteria for
the SSLCA to outperform the other algorithms. The SLCA is consistently the
worst choice for this task, owing both to the large power required by Shapero et
al.’s implementation as well as the ambiguity in its receptive fields as discussed in
Section 4.2.3.

57



the algorithms’ ability to classify digits. While the LCA is the most performant al-

gorithm when only classification accuracy is needed, the SSLCA becomes a better

choice when power is a third as important as classification accuracy. These metrics

demonstrate that the SSLCA is already a viable choice in applications where power

is a concern. Improvements to bring the SSLCA into the same NRMSE and clas-

sification accuracy categories as the LCA are discussed in Sections 2.3 and 3.2.3

as well as Chapter 7.

5.3 Discussion

The SSLCA significantly outperformed the other architectures evaluated for power

on both tasks, consuming a maximum of 28% of the power as other architectures.

Spiking algorithms also demonstrated improved scalability over the non-spiking

LCA, growing with O(n) rather than O(n
√
n).

When combined with the results from Chapters 3 and 4, it was shown that the

SSLCA is very viable for the Reconstruction task when power is three times as

important as NRMSE. For the Classification task, the SSLCA should be chosen

when power is only a third as important as classification accuracy. These combi-

nation metrics showed the significance of the power savings for the SSLCA, and

motivate future work on improving the SSLCA while maintaining the low power

provided by its simplicity.

An important hardware quantity not evaluated in this work is the rate at which

each architecture can encode inputs. If an architecture consumes twice as much

power as another but processes data twice as fast, then the two architectures are

equivalent in terms of the energy required to finish a task. This was omitted from

this work due to time constraints. However, there is no immediate reason why any
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of these architectures would be significantly slower than any of the others, were

they all updated to modern clock speeds and CMOS technology.
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6

Conclusion

This work investigated three sparse coding architectures: the Locally Competitive

Algorithm (LCA) proposed by Rozell et al. in 2008 [27]; the Spiking Locally Com-

petitive Algorithm (SLCA), an extension of the LCA designed by Shapero et al.

in 2013 [30]; and a novel architecture that was the product of this work dubbed

the Simplified, Spiking Locally Competitive Algorithm (SSLCA). Designs for the

LCA and SSLCA using memristors alongside traditional CMOS technology were

presented. The SLCA’s design was presented. Each architecture was simulated

with 50 neurons in two tasks: reconstructing 8×8 patches from 10 natural images,

and classifying handwritten digits from the MNIST database.

Results showed that the SSLCA was a worthwhile contender when power con-

sumption is a consideration. On the Reconstruction task, the SSLCA performed

slightly worse than the other two algorithms. While targeting approximately the

same output layer activity of 20%, it was found that the LCA reconstructed patches

with an NRMSE of 0.074, the SLCA with an NRMSE of 0.095, and the SSLCA

with an NRMSE of 0.13. On the Classification task, the SSLCA outperformed

the SLCA, potentially due to a technicality: the SLCA demonstrated high initial

activity, causing receptive fields to settle on a combination of two digits rather

than a single digit or parts of a digit as were the cases with SSLCA and LCA,

respectively. The final classification accuracies were 85% for the LCA, 81% for the

SSLCA, and 76% for the SLCA. Where the SSLCA significantly outperformed both

of the other algorithms was in power: the SSLCA consumed a maximum of 28% of
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the power as the other architectures, and demonstrated the best scaling properties

of O(n) (SLCA also grows with O(n), while LCA grows as O(n
√
n)). Combin-

ing the results from the Reconstruction and Classification tasks with the power

figures, it was shown that the non-spiking LCA is ideal where optimal NRMSE

or classification accuracy is the only concern. However, when power is a third as

important as classification accuracy, the SSLCA became the algorithm of choice.

When considering reconstruction quality only, the SSLCA became the algorithm

of choice when power was three times as important as NRMSE.

Overall, the SSLCA was successful as a novel architecture. The version used

in this work lacked the ability to deliberately combine several receptive fields to

represent the input. The LCA and SLCA both demonstrated this quality, and

it was discussed as future work for the SSLCA. While the SSLCA lacking this

quality led to decreased task performance, the power savings of the SSLCA made

the algorithm viable, particularly for classification of handwritten digits.

The findings in this work showed that memristors should be strongly consid-

ered when looking for ways to optimize existing algorithms. They are power and

area-efficient, and led to the design of a novel architecture which demonstrated

substantial power savings over conventional architectures. While more work on

the SSLCA would be needed to match the performance of the other algorithms,

the version simulated in this paper was shown to be more suitable than the LCA

and SLCA for applications employing sparse coding with a strong requirement for

low power.
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7

Future Work

As discussed in Section 3.2.3, the SSLCA’s main deficiency stems from the lack of a

residual layer. The LCA realizes this through the penalty term based on similarity

between receptive fields; the SLCA keeps track of this information by keeping a

record of spikes and penalizing appropriately. However, the SSLCA has no such

mechanism.

Future designs for the SSLCA include row headers with a transistor whose

gate is charged proportionally to the representation of that input in the current

output. This should almost entirely mitigate the performance difference between

LCA and SSLCA, while keeping the benefits of using memristors and a simple,

power-efficient architecture. This was discussed in Section 2.3.

Another flaw in the implementation of SSLCA for this work was discussed in

Section 3.2.3: the assumptions for Q1 and Q2 of a perfect match between a trained

receptive field and the input are not realistic. The algorithm would perform better

with a larger number of spikes, encouraged by choosing a less ideal Q1 and Q2.

For example, the assumptions for Q1 and Q2 could be based on each receptive

field accounting for 25% of the input. This would help the algorithm adjust to a

dictionary that would look more like the colored patches from the LCA and SLCA.
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Appendix A

Job Stream: Easy Pipeline Processing

job stream is a C++ and Python package available from PyPI (the Python Package

Index) and is hosted on github.com: https://github.com/wwoods/job_

stream. The library was developed to be novice-friendly, leveraging MPI to

work seamlessly with the processing clusters available at PSU. It features no-delay

checkpointing, load balancing, and performance reporting. This thesis leveraged

the Python job stream.inline module, and achieved acceleration in excess of 300×

across 16 different machines. The README for job stream follows:

README Contents:

• Introduction

• Requirements

• Building job stream

– Building and Installing the Python Module

– Building the C++ Shared Library

– Build Paths

∗ Linux

• Python

– The Inline Module
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∗ inline.Work

· inline.Work.init

· inline.Work.job

· inline.Work.finish

· inline.Work.frame

· inline.Work.reduce

· inline.Work.result

· inline.Work.run

∗ inline.Object

∗ inline.Multiple

– Running External Programs (job stream.invoke)

– Recipes

∗ for x in . . .

∗ Nested for i in x

∗ Aggregating outside of a for loop

∗ Aggregating multiple items outside of a for loop

• C++ Basics

– Reducers and Frames

• Words of Warning

• Appendix

– Running the Tests

– Running a job stream C++ Application

– Running in Python
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A.1 Introduction

job stream is a straightforward and effective way to implement distributed com-

putations. How straightforward? Well, if we wanted to find all primes between 0

and 999:

# Import the main Work object that makes using job_stream dead

simple

from job_stream.inline import Work

import math

# Start by declaring work based on the list of numbers between 0

and 999 as a

# piece of ‘Work‘. When the w object goes out of context, the

job_stream will

# get exectued

with Work(range(1000)) as w:

# For each of those numbers, execute this method to see if that

number is prime

@w.job

def isPrime(x):

for i in range(2, int(math.sqrt(x)) + 1):

if x % i == 0:

return

print(x)

Neat, huh? Or for more of a real-world example, if we wanted line counts for

all of the files in a directory:

# Import the inline library of job_stream (works for 99% of cases

and produces code
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# that is easier to follow). Object is a blank object, and Work is

the workhorse of

# the job_stream.inline library.

from job_stream.inline import Object, Work

import os

import sys

path = sys.argv[1] if len(sys.argv) > 1 else ’.’

# Start by defining our Work as the files in the given directory

w = Work([ p for p in os.listdir(path)

if os.path.isfile(p) ])

# For each file given, count the number of lines in the file and

print

@w.job

def countLines(filename):

count = len(list(open(filename)))

print("{}: {} lines".format(filename, count))

return count

# Join all of the prior line counts by summing them into an object’

s "total" attribute

@w.reduce(store = lambda: Object(total = 0))

def sumDirectory(store, inputs, others):

for count in inputs:

store.total += count

for o in others:

store.total += o.total

# Now that we have the total, print it
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@w.job

def printTotal(store):

print("======")

print("Total: {} lines".format(store.total))

# Execute the job stream

w.run()

job stream lets developers write their code in an imperative style, and does

all the heavy lifting behind the scenes. While there are a lot of task processing

libraries out there, job stream bends over backwards to make writing distributed

processing tasks easy. What all is in the box?

• Easy python interface to keep coding in a way that you are comfortable

• Jobs and reducers to implement common map/reduce idioms. However,

job stream reducers also allow recurrence!

• Frames as a more powerful, recurrent addition to map/reduce. If the flow

of your data depends on that data, for instance when running a calculation

until the result fits a specified tolerance, frames are a powerful tool to get

the job done.

• Automatic checkpointing so that you don’t lose all of your progress if a

multi-day computations crashes on the second day

• Intelligent job distribution including job stealing, so that overloaded ma-

chines receive less work than idle ones

• Execution Statistics so that you know exactly how effectively your code

parallelizes
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A.2 Requirements

• boost (filesystem, mpi, python, regex, serialization, system, thread)

• mpi (perhaps OpenMPI)

Note that job stream also uses yaml-cpp, but for convenience it is packaged

with job stream.

A.3 Building job stream

A.3.1 Building and Installing the Python Module

The python module job stream can be built and installed via:

pip install job_stream

or locally:

python setup.py install

Note: You may need to specify custom include or library paths:

CPLUS_INCLUDE_PATH=˜/my/path/to/boost/ \

LD_LIBRARY_PATH=˜/my/path/to/boost/stage/lib/ \

pip install job_stream

Different mpicxx: If you want to use an mpicxx other than your system’s de-

fault, you may also specify MPICXX=. . . as an environment variable.

A.3.2 Building the C++ Shared Library

Create a build/ folder, cd into it, and run:

cmake .. && make -j8 test
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Note: You may need to tell the compiler where boost’s libraries or include files

are located. If they are not in the system’s default paths, extra paths may be specified

with e.g. environment variables like this:

CPLUS_INCLUDE_PATH=˜/my/path/to/boost/ \

LD_LIBRARY_PATH=˜/my/path/to/boost/stage/lib/ \

bash -c "cmake .. && make -j8 test"

A.3.3 Build Paths

Since job stream uses some of the compiled boost libraries, know your platform’s

mechanisms of amending default build and run paths:

Linux

• CPLUS INCLUDE PATH=. . . - Colon-delimited paths to include directo-

ries

• LIBRARY PATH=. . . - Colon-delimited paths to static libraries for linking

only

• LD LIBRARY PATH=. . . - Colon-delimited paths to shared libraries for

linking and running binaries

A.4 Python

A.4.1 The Inline Module

The primary (user-friendly) way to use job stream in python is via the inline

module, which provides the objects Work, Object, and Multiple. Usually, only

the Work object is required:
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from job_stream.inline import Work

inline.Work

The main element used by job_stream.inline is the Work object. Work is initial-

ized with a list (or generator). Each element of this initial list enters the system

as a piece of work within the job stream.

Similar to traditional imperative coding practices, job_stream.inline passes

work in the same direction as the source file. In other words, if the system starts

with:

w = Work([ 1, 2, 3 ])

Then the numbers 1, 2, and 3 will be distributed into the system. Once work is

in the system, we typically deal with them using decorated methods. The ordering

of the decorated methods matters! job_stream.inline is designed so that your

work flows in the same direction as your code. For instance, running:

w = Work([ 1, 2 ])

@w.job

def first(w):

print("a: {}".format(w))

return w

@w.job

def second(w):

print("b: {}".format(w))

return w
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w.run()

will always print “a: . . . ” before “b: . . . ” for any given piece of work that enters

the system. More can be learned about inline.Work.job in the corresponding

section.

Multiprocessing - Python has the GIL in the default implementation,

which typically limits pure-python code to a single thread. To get

around this, the job_stream module by default uses multiprocessing

for all jobs - that is, your python code will run in parallel on all cores,

in different processes.

If this behavior is not desired, particularly if your application loads a

lot of data in memory that you would rather not duplicate, passing

useMultiprocessing = False to the Work() object’s initializer will force

all job stream activity to happen within the original process:

w = Work([ 1, 2 ], useMultiprocessing = False)

inline.Work.initIn practical systems, the initial work often might be generated

by some initial code. If you distribute your code to multiple machines, then all

code outside of Work’s methods will be executed N times, where N is the number

of machines that you run your script on. For example, running:

print("Init!")

w = Work([ 1 ])

w.run()

on four machines, like this:
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$ mpirun -host a,b,c,d python script.py

Init!

Init!

Init!

Init!

will print, “Init!”, four times. The work element, 1, will be be constructed and

put into four different lists (one on each machine). However, as a piece of work, 1

will only go into the system once.

If it is important that setup code only be run once, for instance if a results file

needs to be initialized, or some debug information is printed, then the init function

is useful. For instance, the above code might be refactored as this:

w = Work()

@w.init

def generateWork():

print("Init!")

return 1

w.run()

Now, no matter how many machines the code is parallelized on, “Init!” will

only be printed once, and the initial work 1 is only generated on one machine.

Since it is just an integer in this case, that’s not so bad, but for more complicated

initial work it might make a difference.

The final work passed into the system will be the union of anything passed to

Work’s initializer, and anything returned from an @Work.init decorated function.

Returning None from a function will result in no work being added. To emit

multiple pieces of work, look at the inline.Multiple object.
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Note: Work.init is special in that it does not matter where in your source code

it appears. Any functions declared with Work.init are always executed exactly

one time, before any work is processed.

inline.Work.jobA job is the main workhorse of job_stream. It takes as input a

single piece of work, processes it, and in turn emits zero or more pieces of work

that flow to the next element of the pipeline. For instance, to add one to a list of

integers:

from job_stream.inline import Work

w = Work([ 1, 2, 3 ])

# Now that we have 1, 2, and 3 as pieces of work in the system,

this next

# function will be called once with each value (possibly in

parallel).

@w.job

def addOne(w):

return w + 1

# addOne will have been called 3 times, and have emitted 3 more

pieces of work

# to the next element in the job stream.

w.run()

I/O Safety: It is not safe to write external i/o (such as a file) within a job. This

is because jobs have no parallelism guards - that is, two jobs executing concurrently

might open and append to a file at the same time. On some filesystems, this results
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in e.g. two lines of a csv being combined into a single, invalid line. To work around

this, see inline.Work.result.

inline.Work.finishDecorates a method that only runs on the main host, and only

after all work has finished. Since MPI common code (outside of job stream, that

is) runs on all machines, it is occasionally useful to run code only once to finish a

calculation. For instance, maybe the final results should be pretty-printed through

pandas:

import pandas

from job_stream.inline import Work

w = Work([ 1, 2, 3 ])

@w.job

def addOne(w):

return w + 1

@w.finish

def pandasPrintResults(results):

print(pandas.DataFrame(results))

Note that this function is similar to inline.Work.result, but less efficient as it

requires keeping all results leaving the job stream in memory. On the other hand,

finish has access to all results at once, unlike result.

inline.Work.frameFrames (and their cousins Reducers) are the most complicated

feature in job_stream. A frame is appropriate if:

• A while loop would be used in non-parallelizable code

• Individual pieces of work need fan-out and fan-in
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Frames have three parts - an “all outstanding work is finished” handler, an

aggregator, and everything in between, which is used to process recurred work.

For example, suppose we want to sum all digits between 1 and our work, and

report the result. The best way to design this type of system is with a Frame,

implemented in inline through Work.frame and Work.frameEnd. The easiest way

to think of these is as the two ends of a while loop - frame is evaluated as a

termination condition, and is also evaluated before anything happens. frameEnd

exists to aggregate logic from within the while loop into something that frame

can look at.

from job_stream.inline import Work, Multiple

w = Work([ 4, 5, 8 ])

@w.frame

def sumThrough(store, first):

# Remember, this is called like the header of a while statement:

once at

# the beginning, and each time our recurred work finishes.

Anything

# returned from this function will keep the loop running.

if not hasattr(store, ’value’):

# Store hasn’t been initialized yet, meaning that this is the

first

# evaluation

store.first = first

store.value = 0

return first
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# If we reach here, we’re done. By not returning anything,

job_stream knows

# to exit the loop (finish the reduction). The default behavior

of frame is

# to emit the store object itself, which is fine.

# Anything between an @frame decorated function and @frameEnd will

be executed

# for anything returned by the @frame or @frameEnd functions. We

could have

# returned multiple from @frame as well, but this is a little more

fun

@w.job

def countTo(w):

# Generate and emit as work all integers ranging from 1 to w,

inclusive

return Multiple(range(1, w + 1))

@w.frameEnd

def handleNext(store, next):

# next is any work that made it through the stream between

@frame and

# @frameEnd. In our case, it is one of the integers between 1

and our

# initial work.

store.value += next

@w.result

def printMatchup(w):
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print("{}: {}".format(w.first, w.value))

w.run()

Running the above code will print:

$ python script.py

4: 10

8: 36

5: 15

Note that the original work is out of order, but the sums line up. This is

because a frame starts a new reduction for each individual piece of work entering

the @frame decorated function.

inline.Work.reduceTODO. Almost always, programs won’t need a reducer. Frames

and the Work.result decorator replace them. However, if the aggregation of a cal-

culation is resource intensive, Work.reduce can help since it can be distributed.

inline.Work.resultSince jobs are not I/O safe, job_stream.inline.Work pro-

vides the result decorator. The result decorator must be the last element in

your job stream, and decorates a function that takes as input a single piece of

work. The decorated function will be called exactly once for each piece of work

exiting the stream, and is always handled on the main host.

For example, here is some code that takes a few objects, increments their b

member, and dumps them to a csv:

from job_stream.inline import Work

w = Work([ { ’name’: ’yodel’, ’b’: 1 }, { ’name’: ’casper’, ’b’: 99

} ])
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@w.job

def addOne(w):

w[’b’] += 1

return w

# Note that @w.init is special, and can be declared immediately

before the

# output job, regardless of jobs before it. It will always be

executed first.

@w.init

def makeCsv():

with open(’out.csv’, ’w’) as f:

f.write("name,b\n")

# @w.result is also special, as it is not allowed to be anywhere

except for

# the end of your job stream.

@w.result

def handleResult(w):

with open(’out.csv’, ’a’) as f:

f.write("{},{}\n".format(w[’name’], w[’b’]))

w.run()

Return values from Work.result are ignored.

inline.Work.runAfter all elements in the job stream are specified, calling Work

.run() will execute the stream. If your stream takes a long time to execute, it

might be worth turning on checkpointing. run() takes the following kwargs:
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• checkpointFile (string) The file path to save checkpoints at. If specified,

checkpoints are enabled. By default, a checkpoint will be taken every 10

minutes (even with 20 machines, checkpoints typically take around 10 sec-

onds).

• checkpointInterval (float) The number of seconds between the completion

of one checkpoint and the starting of the next. Defaults to 600.

• checkpointSyncInterval (float) Used for debugging only. This is the manda-

tory quiet period between the detection of all communication ceasing and the

actual checkpointing.

Typically, Work.run() will return None. However, if your stream has no Work

.result decorated function, then on the primary host, Work.run() will return a

list of work that left the system. On other hosts, it will still return None.

inline.Object

inline.Object is just a basic object that can be used to store arbitrary attributes.

As a bonus, its constructor can take kwargs to set. Object is typically used with

frames and reducers:

from job_stream.inline import Work, Object

w = Work([ 1 ])

@w.frame(store = lambda: Object(init = False))

def handleFirst(store, obj):

if not store.init:

store.init = True

# ...
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# ...

inline.Multiple

The Zen of Python states that explicit is better than implicit. Since lists or list-

like objects may be desired to float around a job stream, all of job_stream.inline

assumes that return values are single pieces of work. If that is not the case, and a

single job should emit multiple pieces of work, simply wrap a collection with the

Multiple object:

from job_stream.inline import Work, Multiple

w = Work([ 1 ])

@w.job

def duplicate(w):

return Multiple([ w, w ])

Now, whatever work flows into duplicate will flow out of it with an extra copy.

A.4.2 Running External Programs (job stream.invoke)

It is tricky to launch another binary from an MPI process. Use job_stream.invoke

() instead of e.g. subprocess.Popen to work around a lot of the issues caused by

doing this. Example usage:

from job_stream import invoke

out, err = invoke([ ’/bin/echo’, ’hi’, ’there’ ])

# out == ’hi there\n’

# err == ’’ (contents of stderr)
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job_stream.invoke() will raise a RuntimeError exception for any non-zero

return value from the launched program. If some errors are transient, and those

errors have a unique footprint in stderr, the strings specifying those errors may be

passed as kwarg transientErrors. Example:

from job_stream import invoke

out, err = invoke([ ’/bin/mkdir’, ’test’ ],

transientErrors = [ ’Device not ready’ ])

mkdir will be run up to kwarg maxRetries times (default 20), retrying until a

non-zero result is given.

A.4.3 Recipes

for x in . . .

To parallelize this:

for x in range(10):

print x

Do this:

from job_stream.inline import Work

w = Work(range(10))

@w.job

def printer(x):

print x

# Any value returned (except for a list type) will be emitted

from the job.

# A list type will be unwrapped (emit multiple)
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return x

w.run()

Nested for i in x

To parallelize this:

for x in range(10):

sum = 0

for i in range(x):

sum += i

print("{}: {}".format(x, sum))

Write this:

from job_stream.inline import Work

w = Work(range(10))

# For each of our initial bits of work, we open a frame to further

parallelize within

# each bit of work

@w.frame

def innerFor(store, first):

"""This function is called whenever everything in the frame is

finished. Usually,

that means it is called once when a frame should request more

work, and once when

all of that work is done.

88



Any work returned by this function will be processed by the jobs

within the frame,

and finally aggregated into the ’store’ variable at the frameEnd

function."""

if not hasattr(store, ’init’):

# First run, uninitialized

store.init = True

store.value = 0

# Anything returned from a frame or frameEnd function will

recur to all of the

# jobs between the frame and its corresponding frameEnd

return list(range(first))

# If we get here, we’ve already processed all of our earlier

recurs. To mimic the

# nested for loop above, that just means that we need to print

our results

print("{}: {}".format(first, store.value))

@w.frameEnd

def innerForEnd(store, next):

store.value += next

w.run()

Aggregating outside of a for loop

To parallelize this:

results = []
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for i in range(10):

results.append(i * 2)

result = sum(results)

Write this:

from job_stream.inline import Object, Work

w = Work(range(10))

@w.job

def timesTwo(i):

return i * 2

# reduce is

@w.reduce(store = lambda: Object(value = 0), emit = lambda store:

store.value)

def gatherResults(store, inputs, others):

for i in inputs:

store.value += i

for o in others:

store.value += o.value

# Run the job stream and collect the first (and only) result into

our sum

result, = w.run()

Aggregating multiple items outside of a for loop

To parallelize this:

results = []
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for i in range(10):

results.append(i)

results.append(i * 2)

result = sum(results)

Write this:

from job_stream.inline import Multiple, Object, Work

w = Work(range(10))

@w.job

def timesTwo(i):

return Multiple([ i, i * 2 ])

# reduce is

@w.reduce(store = lambda: Object(value = 0), emit = lambda store:

store.value)

def gatherResults(store, inputs, others):

for i in inputs:

store.value += i

for o in others:

store.value += o.value

# Run the job stream and collect the first (and only) result into

our sum

result, = w.run()

91



A.5 C++ Basics

job stream works by allowing you to specify various “streams” through your ap-

plication’s logic. The most basic unit of work in job stream is the job, which takes

some input work and transforms it into zero or more outputs:

Figure A.1: A job stream job takes some input, transforms it, and emits zero or
more outputs

That is, some input work is required for a job to do anything. However, the

job may choose to not pass anything forward (perhaps save something to a file

instead), or it might apply some transformation(s) to the input and then output

the changed data. For our first job, supppose we wanted to make a basic job that

takes an integer and increments it, forwarding on the result:

Figure A.2: A job that adds one to the input and emits it

The corresponding code for this job follows:

#include <job_stream/job_stream.h>

//All work comes into job_stream jobs as a unique_ptr; this can be

used
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//to optimize memory bandwidth locally.

using std::unique_ptr;

/** Add one to the integer input and forward it. */

class AddOneJob : public job_stream::Job<AddOneJob, int> {

public:

/** The name used to describe this job in a YAML file */

static const char* NAME() { return "addOne"; }

void handleWork(unique_ptr<int> work) {

this->emit(*work + 1);

}

} addOneJob;

The parts of note are:

• Template arguments to job stream::Job - the class being defined, and the

expected type of input,

• NAME() method, which returns a string that we’ll use to refer to this type

of job,

• handleWork() method, which is called for each input work generated,

• this->emit() call, which is used to pass some serializable object forward as

output, and

• this->emit() can take any type of argument - the output’s type and content

do not need to have any relation to the input.

• There MUST be a global instance allocated after the class definition. This

instance is not ever used in code, but C++ requires a instance for certain

templated code to be generated.

NOTE - all methods in a job stream job must be thread-safe!
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In order to use this job, we would need to define a simple adder.yaml file:

jobs:

- type: addOne

Running this with some input produces the expected result:

local$ pwd

/.../dev/job_stream

local$ cd build

local$ cmake .. && make -j8 example

...

# Any arguments after the YAML file and any flags mean to run the

job stream

# with precisely one input, interpreted from the arguments

local$ example/job_stream_example ../example/adder.yaml 1

2

(some stats will be printed on termination)

# If no arguments exist, then stdin will be used.

local$ example/job_stream_example ../example/adder.yaml <<!

3

8

!

# Results - note that when you run this, the 9 might print before

the 4!

# This depends on how the thread scheduling works out.

4

9

(some stats will be printed on termination)

local$
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A.6 Reducers and Frames

Of course, if we could only transform and potentially duplicate input then job stream

wouldn’t be very powerful. job stream has two mechanisms that make it much

more useful - reducers, which allow several independently processed work streams

to be merged, and recursion, which allows a reducer to pass work back into itself.

Frames are a job stream idiom to make the combination of reducers and recursion

more natural.

To see how this fits, we’ll calculate pi experimentally to a desired precision.

We’ll be using the area calculation - since A = R*piˆ2, pi = sqrt(A / R).

Randomly distributing points in a 1x1 grid and testing if they lie within the unit

circle, we can estimate the area:

Figure A.3: Estimating pi

The job stream part of this will take as its input a floating point number which

is the percentage of error that we want to reach, and will emit the number of

experimental points evaluated in order to reach that accuracy. The network looks

like this:

As an aside, the “literally anything” that the piCalculator needs to feed to

piEstimate is because we’ll have piEstimate decide which point to evaluate.

This is an important part of designing a job stream pipeline - generality. If, for

instance, we were to pass the point that needs evaluating to piEstimate, then we

have locked our piCalculator into working with only one method of evaluating pi.
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Figure A.4: Estimating pi

With the architecture shown, we can substitute any number of pi estimators and

compare their relative efficiencies.

Before coding our jobs, let’s set up the YAML file pi.yaml:

jobs:

- frame:

type: piCalculator

jobs:

- type: piEstimate

This means that our pipe will consist of one top-level job, which itself has no

type and a stream of “jobs” it will use to transform data. Wrapped around its

stream is a “frame” of type piCalculator. This corresponds to our above diagram.

piCalculator being a frame means that it will take an initial work, recur into

itself, and then aggregate results (which may be of a different type than the initial

work) until it stops recurring. The code for it looks like this:

96



struct PiCalculatorState {

float precision;

float piSum;

int trials;

private:

//All structures used for storage or emit()’d must be

serializable

friend class boost::serialization::access;

template<class Archive>

void serialize(Archive& ar, const unsigned int version) {

ar & precision & piSum & trials;

}

};

/** Calculates pi to the precision passed as the first work. The

template

arguments for a Frame are: the Frame’s class, the storage type,

the

first work’s type, and subsequent (recurred) work’s type. */

class PiCalculator : public job_stream::Frame<PiCalculator,

PiCalculatorState, float, float> {

public:

static const char* NAME() { return "piCalculator"; }

void handleFirst(PiCalculatorState& current, unique_ptr<float>

work) {

current.precision = *work * 0.01;

current.piSum = 0.0f;

current.trials = 0;
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//Put work back into this Frame. This will trigger whatever

method

//of pi approximation is defined in our YAML. We’ll pass the

//current trial index as debug information.

this->recur(current.trials++);

}

void handleWork(PiCalculatorState& current, unique_ptr<float>

work) {

current.piSum += *work;

}

void handleDone(PiCalculatorState& current) {

//Are we done?

float piCurrent = current.piSum / current.trials;

if (fabsf((piCurrent - M_PI) / M_PI) < current.precision) {

//We’re within desired precision, emit trials count

fprintf(stderr, "Pi found to be %f, +- %.1f%%\n",

piCurrent,

current.precision * 100.f);

this->emit(current.trials);

}

else {

//We need more iterations. Double our trial count

for (int i = 0, m = current.trials; i < m; i++) {

this->recur(current.trials++);

}

}

}

} piCalculator;
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Similar to our first addOne job, but we’ve added a few extra methods - handle-

First and handleDone. handleFirst is called for the work that starts a reduction

and should initialize the state of the current reduction.

handleWork is called whenever a recur’d work finishes its loop and ends up back

at the Frame. Its result should be integrated into the current state somehow.

handleDone is called when there is no more pending work in the frame, at which

point the frame may either emit its current result or recur more work. If nothing

is recur’d, the reduction is terminated.

Our piEstimate job is much simpler:

class PiEstimate : public job_stream::Job<PiEstimate, int> {

public:

static const char* NAME() { return "piEstimate"; }

void handleWork(unique_ptr<int> work) {

float x = rand() / (float)RAND_MAX;

float y = rand() / (float)RAND_MAX;

if (x * x + y * y <= 1.0) {

//Estimate area as full circle

this->emit(4.0f);

}

else {

//Estimate area as nothing

this->emit(0.0f);

}

}

} piEstimate;

So, let’s try it!

local$ cd build

99



local$ cmake .. && make -j8 example

local$ example/job_stream_example ../example/pi.yaml 10

Pi found to be 3.000000, +- 10.0%

4

(debug info as well)

So, it took 4 samples to arrive at a pi estimation of 3.00, which is within 10%

of 3.14. Hooray! We can also run several tests concurrently:

local$ example/job_stream_example ../example/pi.yaml <<!

10

1

0.1

!

Pi found to be 3.000000, +- 10.0%

4

Pi found to be 3.167969, +- 1.0%

Pi found to be 3.140625, +- 0.1%

1024

1024

0 4% user time (3% mpi), 1% user cpu, 977 messages (0% user)

C 4% user time, 0% user cpu, quality 0.00 cpus, ran 1.238s

The example works! Bear in mind that the efficiency ratings for a task like

this are pretty poor. Since each job only does a few floating point operations,

he communication overhead well outweighs the potential benefits of parallelism.

However, once your jobs start to do even a little more work, job stream quickly

becomes beneficial. On our modest research cluster, I have jobs that routinely

report a user-code quality of 200+ cpus.
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A.7 Words of Warning

fork()ing a child process can be difficult in a threaded MPI application. To work

around these difficulties, it is suggested that your application use job stream::invoke

(which forwards commands to a properly controlled libexecstream).

Job and reduction routines MUST be thread safe. Job stream handles most of

this for you. However, do NOT create a shared buffer in which to do your work as

part of a job class. If you do, make sure you declare it thread local (which requires

static).

It is wrong to build a Reducer or Frame that simply appends new work into

a list. Doing so will cause excessively large objects to be written to checkpoint

files and cause the backups required to support checkpoints to bloat unnecessarily

(backups meaning the copy of each store object that represents its non-mutated

state before the work began. Without this, checkpointing would have to wait for all

Work to finish before completing). This leads to very long-running de/serialization

routines, which can cause very poor performance in some situations.

If you use checkpoints and your process crashes, it is possible that any activity

outside of job stream will be repeated. In other words, if one of your jobs appends

content to a file, then that content might appear in the file multiple times. The

recommended way to get around this is to have your work output to different files,

with a unique, deterministic file name for each piece of work that outputs. Another

approach is to use a reducer which gathers all completed work, and then dumps it

all to a file at once in handleDone().

Sometimes, passing -bind-to-core to mpirun can have a profoundly positive

impact on performance.
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A.8 Appendix

A.9 Running the Tests

Making the “test” target (with optional ARGS passed to test executable) will make

and run any tests packaged with job stream:

cmake .. && make -j8 test [ARGS="[serialization]"]

Or to test the python library:

cmake .. && make -j8 test-python [ARGS="../python/job_stream/test/"

]

A.10 Running a job stream C++ Application

A typical job stream application would be run like this:

mpirun -host a,b,c my_application path/to/config.yaml [-c

checkpointFile] [-t hoursBetweenCheckpoints] Initial work string (

or int or float or whatever)

Note that -np to specify parallelism is not needed, as job stream implicitly

multi-threads your application. If a checkpointFile is provided, then the file will

be used if it exists. If it does not exist, it will be created and updated periodically

to allow resuming with a minimal loss of computation time. It is fairly simple to

write a script that will execute the application until success:

RESULT=1

for i in ‘seq 1 100‘; do

mpirun my_application config.yaml -c checkpoint.chkpt blahblah

RESULT=$?
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if [ $RESULT -eq 0 ]; then

break

fi

done

exit $RESULT

If -t is not specified, checkpoints will be taken every 10 minutes.

A.11 Running in Python

Python is much more straightforward:

LD_LIBRARY_PATH=... ipython

>>> import job_stream

>>> class T(job_stream.Job):

def handleWork(self, w):

self.emit(w * 2)

# Omit this next line to use stdin for initial work

>>> job_stream.work = [ 1, 2, 3 ]

>>> job_stream.run({ ’jobs’: [ T ] })
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Appendix B

git-results: Accountable Organization for Experiments

git-results is a plugin for the Git revision control system to help with running and

cataloguing the results of experiments. The tool automatically handles the build

process, creating tags to work together with the git diff command in order to see

the differences between experiments, and the storing and organization of results

files. This tool was used to organize the results for this thesis; the figures were

all generated from scripts that reach into the appropriate results folder and pull

information from the latest experiments. git-results was written in Python and

is available on github.com: https://github.com/wwoods/git-results.

The README file for this project follows, which shows its operation and features:

A helper script / git extension for cataloguing computation results

B.1 Installation

Put git-results somewhere on your PATH. Proper setup can be verified by running:

git results -h

to show the tool’s help.
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B.2 Usage

git-results is a tool for organizing and bookmarking experiments locally, so that

the exact conditions for each experiment can be remembered and compared intu-

itively and authoritatively. In its most basic mode, running git-results executes

the following steps:

1. Switch to a temporary branch,

• Add all local source changes, and create a commit on the temporary branch

with all of your code changes,

• Clone that commit to a temporary folder,

• Execute git-results-build within that folder,

• Snapshot the folder’s contents,

• Execute git-results-run within that folder,

• Diff the folder’s contents against the original snapshot, moving any new files

to the specified results directory.

A basic invocation of git-results looks like this:

$ git results results/my/experiment

This will open your favorite text editor (via environment variables VISUAL or

EDITOR, or fallback to vi) and prompt for a message further describing the ex-

periment. After that, git-results will do its thing, moving any results files to

results/my/experiment/1 where they are archived. Note the /1 at the end of

the path! Every experiment ran through git-results is versioned, assisting with

iterative development of a single experiment.
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B.3 Special Files

git-results relies on a few special files in your repository; these files define be-

haviors and parameters specific to your application.

B.3.1 git-results-build

is a required file that describes what steps are required to build your project - this

is separated from git-results-run so that e.g. compile errors can be separated

from runtime errors. This file also helps to separate any intermediate files created

as a part of the build process from viable results that should be archived.

B.3.2 git-results-run

is a required file describing what needs to be run to produce output files that need

to be recorded.

B.3.3 git-results-progress

is an optional file that should look at the project’s current state and return a single,

monotonically increasing, floating-point number that describes how far along a

process is. This file is required only for the -r flag, which flags an experiment as

retry-able on events such as failure or sudden system shutdown.

Typically, this file might amount to checking the timestamp on a checkpoint

file; if the checkpoint file does not get updated, then the process is not progressing

and it’s possible that a non-transient error is impeding progress. For example, on

a Linux system, this file might contain:

stat -c %Y my_checkpoint.chkpt 2>/dev/null || echo -1
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If you wish to use git-results -r experiments, then note that you will need to

run git results supervisor in your crontab or equivalent, to periodically check

if any experiments need to be restarted.

B.4 What does git-results put in the output folder and the folders

above it?

B.4.1 Meta information

If your git-results-run file lives at project/git-results-run relative to your

git repository root, then executing an experiment from the project folder as git

results results/a does the following:

1. Establishes a results root in project/results.

The results root is the folder one deeper than the folder containing git-results

-run; in this example, project contains git-results-run, so that folder is the

results root. If this folder is not already treated as a results root, then git-

results will prompt for confirmation of result root creation. Results roots are

automatically added to the git repository’s .gitignore.

• Creates a versioned instance of the experiment named a in the results root

project/results.

Most experiments need to be iteratively refined; git-results helps you to

manage this by automatically creating subfolders 1, 2, etc. for your experiments.

When an experiment completes successfully, these folders will not have a suffix.

However, if they are still running, or git-results-run returns non-zero (failure),
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then these subfolders will be renamed to reflect the experiment’s ultimate status

(1-run, or 1-fail).

• Adds the experiment version to the INDEX file.

Each experiment directory gets a special INDEX file that correlates the number

of the experiment to the message that was typed in when it was executed.

• In the results root, symlinks latest/experiment to the last-run version.

• Creates a link to the experiment version in the dated folder of the results

root, with the same name and version as the experiment but prefixed with

today’s date. E.g., dated/2015/04/13-your/experiment/here/1

Note that these steps are identical and the results will be the same as if git

results project/results/a had been run from the git root. git-results always

stores information relative to the results root, calculated based on where git-

results-run last occurs in the specified path.

B.4.2 Experiment results

The versioned experiment folder will contain the following:

• stdout

• stderr

• A meta-information file git-results-message, containing:

– The git tag that marks the experiment

– The message entered when the experiment was ran

– The contents of git-results-run and git-results-build (and, if it

exists, git-results-progress
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– The starting timestamp, total duration, and whether or not the program

exited successfully.

• Any files created during the execution of git-results-run

(can also be executed as git results project/results/a from the git root;

the path to git-results-run determines the working directory)

B.5 Comparing code from two experiments

git diff path/to/results/experiment/version path/toresults/other/

version --

Note the -- at the end - without this, git doesn’t know what to do.

B.6 Resuming / Re-Entrant git-results-run files

Check out git-results-progress above.

B.7 Special Directories

git-results automatically makes “dated” and “latest” folders.

“dated” contains a folder hierarchy ending in symlinks to the results for ex-

periments, organized by date. For instance, results/dated/2014/03/24-test/run/2

would be a symlink to results/test/run/2. It’s a longer path of course, but it’s

indexed by date.

“latest” contains a folder hierarchy pointing the the most recent run of a test,

including in progress runs.
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B.8 Moving / Linking results

If you wish to rename a tag at a later date, you can do so with move:

$ git results move test/run test/run2

This may not be the wisest idea if you are pushing your results to a remote

repository, as git tags are relatively immutable on remote machines. But, it will

work locally anyway.

If you simply wish to link results into a new location, use link:

$ git results link test/run test/run2

It just uses symlinks, meaning the data will not be copied, but subsequent

moves will break the links.
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